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Abstract

Commonly, the evolutionary history of a set of taxa is described by a phylogenetic tree.
However, in certain cases, evolution can best be described by a phylogenetic network. In
previous research, the term tree-based was introduced for a phylogenetic network, meaning
that it can be drawn as a phylogenetic tree with additional horizontal arcs. In particular,
an algorithm was given to determine whether a binary network is tree-based or not. Here
we give a simple graph-theoretic classification of all tree-based and non-tree-based binary
phylogenetic networks. In addition, we give an upper bound on how many leaves need
to be added to make any binary network tree-based. We also give an upper bound for
the number of base trees that a tree-based binary phylogenetic network contains. Finally,
since there has not been done any previous research on the tree-basedness of non-binary
phylogenetic networks, some theorems of the binary case are studied and checked whether
they also apply in the non-binary case. We show that some of these theorems apply in the
non-binary case and some do not. In particular, we give a classification for non-binary
phylogenetic networks that are tree-based.
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1. Introduction

For centuries, evolution has been an important topic in biology. Commonly, the evolu-
tionary history of a set of taxa is described by a phylogenetic tree. However, in certain
cases, evolution could best be described by a phylogenetic network. For example, a phy-
logenetic tree is insufficient to describe the evolutionary history including hybrid species,
since a hybrid species has (at least) two parent species. Furthermore, research has shown
that bacteria have transferred genes from one species to another, while they did not di-
rectly share a common ancestor. These gene transfers can be denoted by horizontal arcs
added to a phylogenetic tree. Such a phylogenetic tree with additional horizontal arcs
can alternatively be displayed as a phylogenetic network. Mathematically, a rooted binary
phylogenetic network is a directed acyclic graph which contains one root, tree-vertices,
reticulations and leaves. The root has in-degree 0 and out-degree 1 or 2, tree-vertices
have in-degree 1 and out-degree 2, reticulations have in-degree 2 and out-degree 1 and
leaves are vertices with in-degree 1 and out-degree 0. A tree contains no reticulations.
Therefore, a phylogenetic tree is not always able to fully describe the process of evolution.

In previous research [2] the term tree-based was introduced for a phylogenetic network,
meaning that it can be drawn as a phylogenetic tree with additional horizontal arcs.
Such arcs can represent gene transfer, in our example between bacterial species. Several
theorems were presented that can be used to determine, in certain cases, whether a net-
work is tree-based or not. For example, when a binary phylogenetic network contains a
reticulation that has two parents that are reticulations, the network is not tree-based.
Additionally, an algorithm was presented to check whether a binary phylogenetic network
is tree-based or not. However, although it has been shown that phylogenetic networks
are tree-based in some cases and not tree-based in certain other cases, no general clas-
sification of tree-based networks is given. In addition, the paper does not discuss any
theorems about non-binary phylogenetic networks, in which a vertex can have more than
two children or more than two parents.

Therefore, we will thoroughly research the difference between tree-based and non-tree-
based binary networks and subsequently study tree-basedness of non-binary networks.
First, we will give the most important definitions for binary networks and describe the
algorithm from [2] in Section 2.1. An important and new notion is omnian, which is
a vertex that has only reticulation children. After the preliminaries, some important
theorems from previous research are stated in Section 2.2.1, followed by new theorems in
Section 2.2.2. First, it will be shown that a binary phylogenetic network is tree-based if
and only if there exists a matching in a certain bipartite graph that is associated to the
network, where every omnian is covered by the matching. This theorem is used to show
that all networks containing at most two reticulations are tree-based. On the other hand,
we will show an example of a part of a binary network containing three reticulations that is
not tree-based. Then, using Hall’s Theorem, we give a simple graph-theoretic classification
of tree-based binary networks. We will show that a binary phylogenetic network is tree-
based if and only if every subset S of its omnians has at least |S| different children. This
is followed by a different graph-theoretic characterization of binary phylogenetic networks
that are not tree-based.
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In [2] it is stated that every non-tree-based binary pylogenetic network can be expanded
to become tree-based by the addition of extra leaves, but it does not state how many ad-
ditional leaves may be necessary. In Section 2.2.2, we will give an upper bound on the
number of additional leaves that need to be added. Francis and Steel [2] also asked how
many different base trees a network contains. We will give an upper bound on this number
at the end of Section 2.2.2.

Moreover, binary phylogenetic networks are not always as realistic as non-binary net-
works, because of uncertainty in the order of speciation events, and reticulation events.
Therefore, after the binary case, the non-binary case will be studied in Section 3. Since
there has not been done any research on the tree-basedness of non-binary networks before,
we will look at some of the theorems of the binary case and see if they also hold in the
non-binary case. We will show that some of these theorems apply in the non-binary case
and some do not. In particular, we will give a classification for non-binary phylogenetic
networks that are tree-based. In the last section, there are conclusions and a discussion.
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2. Binary phylogenetic networks

2.1. Preliminaries. First, some essential concepts around binary phylogenetic networks
will be explained. Phylogenetic networks contain vertices and directed edges. Directed
edges will called arcs from now on.
A (rooted) binary phylogenetic network is a directed graph N=(V,A), which is acyclic. It
contains 1 unique vertex, the root, which has in-degree 0 and out-degree 1 or 2. The other
vertices in N are one of the following forms:
- a vertex with out-degree 0, a leaf (vertices a,b and c are leaves, coloured blue in
Figure 1);
- a reticulation, a vertex with in-degree 2 and out-degree 1 (the pink coloured vertices in
Figure 1);
- a tree-vertex, a vertex with in-degree 1 and out-degree 2.

An example of a binary phylogenetic network is given in Figure 1. A (rooted) binary
phylogenetic tree is a binary phylogenetic network that contains no reticulations. Notice
that every arc is drawn as an edge, but they are directed to the lowest vertex. This is the
case throughout the rest of the report, unless explicitly mentioned otherwise.

Root

a
b

c

x

y

Figure 1. An example of a binary phylogenetic network.

Take (u, v) = a ∈ A, an arc from vertex u to v. Then, a is called an out-going arc
of u and an in-coming arc of v. Vertex u is a parent of v and v is called a child of u. If there
is also an arc (u,w) ∈ A an arc from vertex u to vertex w, then vertex w and v have a joint
parent, so w and v are called siblings. When a vertex z has only reticulations as children,
then z is called an omnian. For example in Figure 1, vertices x and y are omnians, since
both children of these vertices are reticulations. Omnians can be reticulations as well,
see Figure 4, where both vertices u and v are omnians. The importance of omnians will
become clear later on in the report.
A binary phylogenetic network N is tree-based with base-tree T , when N can be obtained
from T via the following steps:
- Add some vertices to the arcs in T . These vertices, called attachment points, have in-
and out-degree 1.
- Add arcs, called linking arcs, between pairs of attachments points, so that N remains
binary and acyclic.
- Suppress every attachment point that is not incident to a linking arc.
An example of the procedure is displayed in Figure 2, in which the tree-basedness of the
binary phylogenetic network N of Figure 1 is examined. By definition, we see that N is
tree-based, since the last picture in Figure 2 is N and it is obtained from tree T displayed
in Figure 2(a).
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a b c

(a) (Base-)tree T

a b c

(b) Attachment points added

a b c

(c) Linking arcs added

a b c

(d) Attachment points sup-
pressed

a
b

c

(e) N of Figure 1

Figure 2. From phylogenetic tree to phyogenetic network in steps (a) to
(e), which shows that by definition N is tree-based.

The algorithm to test whether a binary phylogenetic network N is tree-based or not
from [2] will be described. There are two steps for the algorithm:
Step 1. Label every outgoing arc of a reticulation and every incoming arc of a tree vertex
with t.
Step 2. There are two rules:
R1. For each reticulation, (i) if one of the incoming arcs has label t then the other incom-
ing arc is assigned label f , and (ii) if one of the incoming arcs has label f then the other
incoming arc is assigned label t.
R2. For each tree-vertex, if one of the outgoing arcs has label f then the other outgoing
arc is assigned label t.
Use R1 and R2 to label the other arcs in the network.

Now, three cases can occur:
1. Some of the arcs of N have been assigned a label and R1 and R2 can no longer be
applied to the remaining arcs.
2. All of the arcs of N have been assigned a single label.
3. An arc of N is assigned a label at first and later in the process a different label is
assigned by R1 or R2.
If case 3 occurs, then N is not tree-based and if case 1 or 2 occurs the network is tree-
based. In this report arcs with label t will be coloured green and arcs with label f will
be coloured orange.

In the example in Figure 3, Step 1 of the algorithm is executed.
We see that after Step 1, rules R1 and R2 can no longer be applied and some arcs

remain unlabeled. This means that case 1 occurs, so the binary phylogenetic network N
of Figure 1 is again tree-based, now according to the algorithm.
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a
b

c

Figure 3. The binary phylogenetic network of Figure 1 after Step 1 of the
algorithm for tree-basedness.

a

b

i
j

u

v
cx

α1 α2

(a) The network after Step 1 of
the algorithm for tree-basedness.

a

b

i
j

u

v
cx

α1 α2

(b) The network after applying
R1 (i) on vertex x in Step 2 of the
algorithm for tree-basedness.

Figure 4. An example of a non-tree-based binary phylogenetic network.

In Figure 4(a), another example of a binary phylogenetic network is displayed and
Step 1 of the algorithm for tree-basedness is applied. We examine incoming arcs i and
j of reticulation x. Both arcs are first coloured green, because i is the outgoing arc of
reticulation u and j is the outgoing arc of reticulation v. If R1 (i) is applied on vertex x.
It follows that, since arc i is coloured green, that j should be coloured orange, as displayed
in 4(b). Therefore, case 3 occurs and it follows that N is not tree-based.

Let N = (V,A) be a binary phylogenetic network. An antichain is a set of ver-
tices K ⊆ V for which there is no path from one vertex in K to another vertex
in K. Network N satisfies the antichain-to-leaf property if for every antichain in N there
exists a path from every vertex in K to a leaf, so that these paths are arc-disjoint. Which
means, for example, that if there is an antichain of three vertices and there are only two
leaves in the network, the network does not satisfy the antichain-to-leaf property.
An example of an antichain can be seen in Figure 4, where vertices α1 and α2 form an
antichain. The network does not satisfy the antichain-to-leaf property, because when we
look at the antichain formed by vertices u and v, there are no arc-disjoint paths to leaves.
A rooted spanning tree τ is a tree that contains all vertices of a phylogenetic network N
and a subset of the arcs of N as arcs, so that τ is a tree. A dummy leaf of a rooted
spanning tree is a vertex that is not a leaf in network N , but is a leaf in τ .
A vertex v is called stable if there exists a leaf l for which every path from the root to l
passes through v. A network is called stable if every reticulation is stable. Let G = (V,E)
be a graph. If v, w ∈ V so that (v, w) ∈ E, then w is a neighbour of v. For a set S ⊆ V ,
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the neighbours of S are denoted by Γ(S). A matching M ⊆ E is a set of edges so that no
vertex v ∈ V is incident with more than one edge in M . A maximal path in G is a directed
path that is not contained in a larger directed path. When, in graph G = (V,E), there
is a path from vertex a to vertex x, without passing through a vertex twice, and there
is an edge (a, x), then the path and edge together are called a circuit. An example of a
circuit can be seen in Figure 11(c). Matchings, maximal paths and circuits will be used in
bipartite graphs. Let N = (V,A) be a binary phylogenetic network. Let B = (U ∪ R,E)
be the bipartite graph associated to N . For each vertex v ∈ V , if v is an omnian, put
a copy of v in U and if v is a reticulation put a copy of v in R. If v is an omnian as
well as a reticulation, we put one copy of v in U and one copy of v in R. There is an
edge {v, v′} ∈ E if (v, v′) ∈ A, where v ∈ U and v′ ∈ R.

2.2. Theorems.

2.2.1. Previous research. There were some interesting theorems discovered in
earlier analysis. Since we presume that there is yet more to discover around the concepts
of stability, antichain and tree-basedness, these will be the main topics that we discuss.
First, the relation between a tree-based network and a stable network is considered. From
previous research we know the following propositions.

Proposition 2.1. [3] A stable binary phylogenetic network N has the following property:
The child and the parents of a reticulation are tree-vertices.

Proof. (Adapted from the proof of Proposition 4.1 in [3])
We assume N is stable. The statement is equivalent to that there are no two reticulations
in N which have a parent-child relation. Take u and v, two reticulations in N so that u
is a parent of v. Because N is stable, every reticulation is stable, so there exists a leaf l
for which every path from the root to l goes through u. Let w be the other parent of v.
There exists a path P from the root via w and v to leaf l. Then, P does not go through u,
which is a contradiction. So there are no two reticulations in N which have a parent-child
relation. �
Proposition 2.2. [2] Consider a binary phylogenetic network N over leaf set X.
i) If each vertex of N of in-degree 2 has parents that both have out-degree 2, then N is
tree-based.
ii) If N has a vertex of in-degree 2 whose parents both have out-degree 1, then N is not
tree-based.

Proof. i) Assume that each vertex of N of in-degree 2 has parents that both have out-
degree 2. We know by Proposition 2.1 that N is stable. We want to obtain a rooted
spanning tree T , so we need to remove incoming arcs of reticulations. Since T is not
allowed to contain dummy leaves, we have to make sure that the incoming arcs of
reticulations that are removed, are not incident with the same tree-vertex. Take vertex
set R containing all reticulations of N , vertex set V containing all tree-vertices of N and E
edges that represent the incoming arcs of reticulations of N . Let S ⊆ R. The number of
edges incident with S is 2 |S| is equal to the number of edges incident with Γ(S) which
is at most 2 |Γ(S)|. With Hall’s Theorem (stated in Theorem 2.6) it follows that there
exists a matching that covers R. We obtain T from N by removing every arc in N that
is an edge in the matching. T contains no dummy leaves, because the matching makes
sure that no two out-going arcs of a tree-vertex are removed.
ii) Proof can be found in the proof of Proposition 3ii) in [2]. �
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Corollary 2.3. Every binary stable phylogenetic network is tree-based.

Proof. The proof follows directly from Proposition 2.1 and Proposition 2.2i). �

2.2.2. New research. There exist some theorems that help to decide whether a network
is tree-based or not. Even an algorithm has been created. Still, there is no simple
graph-theoretic characterization of the networks that are tree-based. Therefore, the tree-
basedness quality of a network should be explored further, in ways it has not been re-
searched yet. The following theorem presents a different condition for a network to be
tree-based.

Theorem 2.4. Given a binary phylogenetic network N . Let B = (U ∪R,E) be the bipar-
tite graph associated to N . N is tree-based if and only if there exists a matching M in B
so that |U | = |M |.

Proof. Assume there exists a matching M in B, so that all omnians are covered by M .
Construct a set A of arcs as follows: Add the outgoing arc of every reticulation of N and
the incoming arc of all tree-vertices to A. Additionally, add every edge of M as arc to A,
that has not yet been added to A. For every reticulation that has not yet been covered,
add one of its incomming arcs to A. The tree T , consisting of all vertices of N and the set
of arcs A, is a rooted spanning tree, because there is precisely one incoming arc of every
vertex contained in T and there are no dummy leaves, because U is covered.
Now, assume that N is tree-based. Let T be a base-tree of N . Colour every edge of B
that is an arc in T . When an omnian has out-degree 2 and both arcs are contained in T ,
decolourise 1 of the 2 arbitrarily in B. T is a base-tree, which means there are no dummy
leaves, so all omnians are covered. The fact that T is a base-tree also implies that the
vertices in R have in-degree 1. The vertices of out-degree 2 only have 1 coloured edge, so
all coloured edges in B form a matching M, so that |U | = |M |. �

This theorem can be easily used to verify whether a binary phylogenetic network N is
tree-based or not. We will look at an example of a binary phylogenetic network N and
the bipartite graph B = (U ∪R,E) associated to N in Figure 5.

y z

v

q x

a
b dc

(a)

U R

y

z

v

y

z

q

x

(b)

Figure 5. Using Theorem 2.4 to show that this is a tree-based binary
phylogenetic network.

Since there exists a matching, which is coloured blue and dashed in Figure 5(b), that
covers U , the binary phylogenetic network in Figure 5(a) is tree-based. A base-tree T of
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a
b dc a b dc

Figure 6. A base-tree T of the network in Figure 5(a).

network N can be seen in Figure 6, where the arcs that were edges of the matching are
coloured in blue.
Since a binary phylogenetic network that contains no reticulations is a rooted spanning

tree, such a network is clearly tree-based. The next theorem shows that this is still the
case for all networks with one or two reticulations.

Theorem 2.5. If a binary phylogenetic network N contains at
most 2 reticulations, then N is tree-based.

Proof. Assume that N contains a at most 2 reticulations.
i) If N contains 1 reticulation, then both parents of this reticulation are tree-vertices and
with Proposition 2.2 it follows that N is tree-based.
ii) Consider the case that N contains 2 reticulations x and y. If x and y do not have a
parent-child connection, then both parents of x and y are tree-vertices and it follows from
Proposition 2.2 that N is tree-based.
Now suppose that x is the parent of y. There are two possibilities, x and y having a joint
parent and x and y having a different parent, both displayed in Figure 7.

a)

z

x

y

N1

b)
z

x

y

w

N2

Figure 7. The two possibilities that can occur when reticulation x is the
parent of reticulation y.

From a) and b) of Figure 7 we create two bipartite graphs, A = (U ∪ R,E) associated
to N1 and B = (U ∪R,E) associated to N2, that are displayed in Figure 8.
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a)

U R
z

x

x

y

(a) Bipartite graph A associ-
ated to N1.

b)

U R

x
x

y

(b) Bipartite graph B associ-
ated to N2.

Figure 8. The bipartite graphs associated to the partial networks in Figure 7.

In both cases in Figure 8 it is easy to see that there is a matching that covers U . It
follows from Theorem 2.4 that N is tree-based. �

We have seen that binary phylogenetic networks containing at most two reticulations
are all tree-based. However, Figure 9 shows a part of a network N that contains three
reticulations and is not tree-based. So it follows that not all networks with three reticu-
lations are tree-based.

Figure 9. Local situation in which N is not tree-based.

In general, we can decide whether the bipartite graph B associated to a network N
contains a matching that covers U by using Hall’s Theorem, which is stated below.

Theorem 2.6 (Hall’s Theorem). [1] Let B = (V ∪ W,E) be a bipartite graph with
vertex set V and W . There exists a matching that covers V if and only if for ev-
ery V1 ⊆ V : | V1 | is smaller than or equal to the number of different neighbours
of the vertices in V1.

Consider Hall’s Theorem and Theorem 2.4. Combining those two theorems gives a
characterization for a binary phylogenetic network to be tree-based.

Corollary 2.7. Let N be a binary phylogenetic network and U the set of all omnians
of N . Then N is tree-based if and only if for all S ⊆ U the number of different children
of S is greater than or equal to the number of omnians in S.

Proof. Follows directly from Theorem 2.4 and Theorem 2.6. �

An example of how this theorem and corollary can be applied is given in Figure 10,
where an example of a binary phylogenetic network N is displayed in (a) and the bipartite
graph B = (U ∪ R,E) associated to N in (b). The reticulations are coloured in pink,
the omnians in blue and the children of the omnians in yellow. For example, vertex f is
a reticulation and an omnian, so it is coloured pink and blue.
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From the bipartite graph in Figure 10 it follows from Hall’s Theorem (Theorem 2.6),
with S = U , that there exists no matching in B that covers U . Therefore, with Theo-
rem 2.4 it follows thatN in Figure 10(a) is not tree-based. Indeed, we can directly see inN
that the set S = {f, a, i, h, g} of five omnians has only four different children {b, c, d, e}.
Hence this network is not tree-based.

p

q
f

e

w

a

b
i

c

xh

d

g

d

y

f

a

i

h

g

a

b

c

d

e

f

U R

Figure 10. Example of a non-tree-based binary phylogenetic network N
and the bipartite graph B associated to N .

Proposition 2.2 showed that a binary phylogenetic network is tree-based if for each
reticulation both parents are tree-vertices and not tree-based if both parents are reticu-
lations. Therefore, the situation in which a reticulation in N has one parent that is a
reticulation and the other a tree-vertex has not yet been specified. The next theorem
shows that such networks are tree-based if an additional condition is fulfilled.

Theorem 2.8. If for every reticulation r in a binary phylogenetic network N , one of the
two following cases applies:
i) Both parents of r are tree-vertices.
ii) One parent of r is a tree-vertex and the sibling of r is a tree-vertex.
Then N is tree-based.

Proof. If every reticulation is of case i) then Proposition 2.2 implies that N is tree-based.
Now consider the general case in which N is a binary phylogenetic network containing an
arbitrary number of reticulations of cases i) and ii). Let B = (U ∪R,E) be the bipartite
graph associated to N . Then, in B, all vertices in the set U of omnians, have degree 1
or 2 and all vertices in the set R of reticulations, have degree 1 or 2. Since in case ii)
it is excluded that a reticulation with one parent a reticulation has a sibling that is a
reticulation, there are three possibilities that can occur in B.
(a) A reticulation has one reticulation parent and no reticulation sibling. (case ii)
(b) A reticulation r has two parents that are tree-vertices, and with case ii) it follows
that siblings of r are tree-vertices or reticulations that also have two parents that are
tree-vertices.
(c) Similar to (b) but then reticulations have common parents, which means the number
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of reticulations in N is equal to the number of omnians in N , so that a circuit is formed
in B.
The possibilities that can occur are displayed in Figure 11. Notice that case (b) and (c)
can be infinitely long, this is only an example.

U R

(a)

U R

(b)

U R

(c)

Figure 11. Examples of possible maximal paths and circuits in B.

Let S ⊆ U . For case (a), the number of edges incident with S = |S| is equal to the
number of edges incident with Γ(S), which is equal to |Γ(S)|. For case (b), the number
of edges incident with S = 2 |S| ≤ the number of edges incident with Γ(S) ≤ 2 |Γ(S)|− 2.
This is equivalent with |S| = |Γ(S)| − 1. In case (c), the number of edges incident
with S = 2 |S| is equal to the number of edges incident with Γ(S), which is equal
to 2 |Γ(S)|. So, when every maximal path in B is examined seperately it follows that for
every maximal path in B, ∀ S ⊆ U the number of neighbours of S is greater than or equal
to the number of vertices in S. With Hall’s Theorem (Theorem 2.6) the above implies
that there exists a matching in B that covers U . With Theorem 2.4 it follows that N is
tree-based. �

In previous research, another remarkable proposition was found.

Proposition 2.9. [2] If a binary phylogenetic network over leaf set X is tree-based, then
it satisfies the antichain-to-leaf property.

On the other hand, if a network is not tree-based, it can still satisfy the antichain-to-leaf
property. Yet, until now, only one example had been found, displayed in Figure 12.

Figure 12. Not tree-based binary phylogenetic network satisfying the
antichain-to-leaf property [2].

Next, there are two examples displayed in Figure 13(a) and (b), showing a part of a
binary phylogenetic network N . These examples are not tree-based, which can be checked
using Corollary 2.7.
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oeob

(a)

ob
o2 o3

r1 = oe r2

r3

(b)

Figure 13. Examples of local structures of binary phylogenetic networks
that are not tree-based.

However, if there is a directed path in Figure 13(a) from one reticulation to an omnian,
so that the network stays acyclic, the network satisfies the antichain-to-leaf property. In
addition, if there is a directed path in Figure 13(b) from reticulation r2 to omnian o1, we
see that the network stays acyclic and also satisfies the antichain-to-leaf property. Both
networks that satisfy the antichain-to-leaf property are displayed in Figure 14. This gives
us an insight in more partial structures of networks that are not tree-based but do satisfy
the antichain-to-leaf property.

(a) (b)

Figure 14. Local structures of binary phylogenetic networks that satisfy
the antichain-to-leaf property.

While looking at the examples in Figure 13, we see a pattern has emerged in both of
them. In (a) the pattern is marked dashed in green. Starting at vertex ob and ending at
vertex oe, we see a zigzag starting with an omnian, followed by a reticulation, omnian,
reticulation (. . .) and eventually ending with an omnian. The last omnian in the pattern
can be a reticulation that is already part of the path, as can be seen in Figure 13(b).
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Combining this observation with Theorem 2.4 leads to a graph-theoretic characterization
that is stated in the following theorem. The theorem proves that every binary phylogenetic
network that is not tree-based has a similar structure as the examples in Figure 13.

Theorem 2.10. Let N be a binary phylogenetic network and B = (U ∪ R,E) the
bipartite graph associated to N . N is tree-based if and only if B contains no maximal path
which starts and ends in U .

Proof. Notice that every vertex in B is of degree at most 2, therefore B contains paths
and circuits. We distinguish four cases:
i) A maximal path begins and ends in R.
ii) A maximal path begins in U and ends in R.
iii) A maximal path begins and ends in U .
iv) A circuit.

i) All vertices in R are of degree at most 2. Because the maximal path begins and ends
in R, all omnians have degree 2. Let S ⊆ U . The number of edges incident
with S = 2 |S| ≤ the number of edges incident with Γ(S) ≤ 2 |Γ(S)|.
So, ∀ S ⊆ U : |Γ(S)| ≥ |S|. It follows from Hall’s Theorem that there exists a matching
in B that covers U .

ii) Let S ⊆ U . All vertices in R are of degree 2, except for the reticulation where
the maximal path in S ends. All omnians are of degree 2, except for the omnian where
the maximal path in S begins. All edges incident with S = 2 |S|, except for the first
omnian of the path in S. So, all edges incident with S = 2 |S| − 1 = all edges incident
with Γ (S) = 2 |Γ(S)| − 1, because the maximal path in S ends in R, the end-vertex has
degree 1. It follows that |S| = |Γ(S)|. So, ∀ S ⊆ U : |Γ(S)| ≥ |S|. It follows from Hall’s
Theorem that there exists a matching in B that covers U .

iii) All omnians in U are of degree 2, except for the omnians where the maximal path
begins and ends. All reticulations in R are of degree 2, because the maximal path begins
and ends in U . Let S ⊆ U , so that U ⊆ S. All edges incident with S = 2 |S| − 2 = all
edges incident with Γ(S) = 2 |Γ(S)|. It follows that |S| − 1 = |Γ(S)|. So, |Γ(S)| ≤ |S|,
from which follows that ∃ S ⊆ U : |Γ(S)| ≤ |S|. So, it follows from Hall’s Theorem that
there does not exist a matching in B that covers U .

iv) All vertices in B are of degree 2. Let S ⊆ U . The number of edges incident
with S = 2 | S | = the number of edges incident with Γ(S) = 2 |Γ(S)|.
So, ∀ S ⊆ U : |Γ(S)| = |S|. It follows from Hall’s Theorem that there exists a matching
in B that covers U .

Hence, there exists a matching in B that covers U precisely if there is no maximal path
that starts and ends in U . The theorem now follows from Theorem 2.4. �

From Theorem 2.10 it follows that it is not even necessary to check whether N satisfies
the antichain-to-leaf property to see that N is not tree-based.

In [2] it is concluded that every non-tree-based network can be transformed into a tree-
based network by adding leaves. Although it has been stated, it is not stated how many
leaves should be added. This leads us to the following theorem.
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Theorem 2.11. Let N be a non-tree-based binary phylogenetic network.
Let B = (U ∪ R,E) be the bipartite graph associated to N . If, for every maximal path
in B that begins and ends in U, one tree-vertex and one leaf is added between one of the
arcs that is an edge of the maximal path in B, then N becomes tree-based.

Proof. Assume that N is not tree-based. Then, by Theorem 2.10, there exists at least 1
maximal path in B that begins and ends in U . First, assume there is exactly one maximal
path P in B that begins and ends in U . Take omnian v ∈ U on this path arbitrarily. Then
there exists a matching in B that does not cover v. We add a tree-vertex w in N with
one child that is a leaf attached to it, between v and a child k, which is a reticulation.
Since w is now a child of v and since w is not a reticulation, v is not an omnian anymore.
Therefore, |U | = |U | − 1. Since v is no longer part of U there are two possibilities for the
new situation:
a) 1 edge from v to the child in R is no longer present in B.
b) 2 edges from v to 2 children in R are no longer present in B.
In possibility a), P becomes a path begining in U and ending in R.
In possibility b), P is split into two paths beginning in U and ending in R.
Because there are no maximal paths in B in the new situation that begin and end in U
it follows with Theorem 2.10 that N is tree-based.
When there is more than one maximal path that begins and ends in U in B, then for
every one of them there should be added a tree-vertex and leaf. It follows in the same
way as just described that N is tree-based. �
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Figure 15. An example of a binary phylogenetic network.
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Figure 16. A bipartite graph B associated to the network in Figure 15
with its three possible matchings drawn dashed and in blue.

Since we now know that every non-tree-based binary phylogenetic network can be made
tree-based, it is interesting to know how many different base trees a tree-based binary
phylogenetic network contains. In order to get insight in this number, we will first look
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at how many different matchings there exist in the bipartite graph B associated to a
tree-based network N . In Figure 15 an example of a binary phylogenetic network N is
displayed. Let B = (U ∪ R,E) be the bipartite graph associated to N . All possible
matchings of B are displayed in Figure 16, where the matchings are dashed and in blue.
Notice that every possible matching leaves one reticulation uncovered. This leads us to
Theorem 2.13. First, an important observation is done.

Observation 2.12. Let N be a binary phylogenetic network and B the bipartite graph
that is associated to N . Since N is binary, each connected component of B is a path or a
circuit.

Theorem 2.13. Let N be a binary phylogenetic network and B = (U ∪ R,E) the
bipartite graph that is associated to N . The number of different matchings in B can be
calculated by

2C
∏
P∈S

r(P ),

with S the set of maximal paths that begin and end in R, r(P ) the number of reticulations
contained in a path P and C the number of circuits in the bipartite graph B.

Proof. Since N is tree-based, there exists no maximal path in B that begins and ends
in U . For every connected component that is a path in B that begins in U and ends in R,
there is only one possible matching that covers all omnians. Therefore, these paths do
not have an influence on the total number of different matchings in B.
First, assume there is one connected component that is a path that begins and ends
in R. The number of omnians in this path is equal to the number of reticulations minus
one (|U | = | R | − 1), since the maximal path begins and ends in R. Then, for every
reticulation r, there is a matching in B that covers all reticulations except for r. Therefore,
the number of different matchings is equal to the number of reticulations in the maximal
path. For every circuit in B there are two possible matchings. Now the total number of
different matchings in B can be calculated by mutlipying the number of reticulations of
every maximal path that begins and ends in R and multiplying this number by two to
the power the number of circuits in B. �

Now we we know the number of possible matchings in the bipartite graph B that is
associated to binary phylogenetic network N , we want to use this to find the number of
possible base-trees of N . Per matching there can be several possible base-trees because,
for each reticulation that is not covered by the matching, one of its two incoming edges
can be added as arc to the base-tree. Let us return to the example of Figure 15 and the
associated figures, Figure 16 and Figure 17. The three different matchings of Figure 16
have been drawn twice in Figure 17 and the different ways of connecting the reticulation
that is not covered are coloured dashed and in red. In graphs 1 and 4 in Figure 17, the red
dashed line means that the reticulation is connected to the parent that is not an omnian.
Notice that the bipartite graphs in Figure 17 with number 2 are the same and the ones
with number 3 are the same (except for the colouring of the dashed edges). Therefore,
we need to make sure that we do not count any base tree double.
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Figure 17. The three different matchings in bipartite graph B of the
network in Figure 15 with all possible ways of adding the non-covered retic-
ulations.

The previous example gives us an insight in the maximal number of base trees of a tree-
based binary phylogenetic network. We will now give an upper bound for the number of
base trees that are contained in a tree-based binary phylogenetic network. Notice that a
reticulation with degree 0 is actually a maximal path that begins and ends in R.

Theorem 2.14. Let N be a tree-based binary phylogenetic network and B = (U ∪ R,E)
the bipartite graph that is associated to N . The maximal number of possible base trees of
N is calculated by

2C
∏
P∈S

(r(P ) + 1),

with S the set of maximal paths that begin and end in R, r(P ) the number of reticulations
contained in a path P and C the number of circuits in the bipartite graph B.

Proof. First, assume that there is one maximal path in B that begins and ends in R.
From Theorem 2.13 it follows that in that case there are |R| different matchings in B.
For the reticulations which have degree 1 in B, the possibility of connecting them to the
parent that is not an omnian can only occur when this reticulation is left uncovered in
the matching, so these two cases will automatically not be counted double. For the retic-
ulations which have degree 2 in B, if they are left uncoved by the matching, there are two
possible ways of connecting each of these reticulations in the base-tree, but then each of
these base trees is counted double. Therefore, to calculate the total number of different
base trees in the maximal path we get: two times the number of reticulations minus two
(the two cases that are automatically not counted double) devided by two because of the
double-counting and eventually plus two to count the cases that are automatically not
counted double. Which leads to the following calculation:

2 |R| − 2

2
+ 2 = |R| − 1 + 2 = |R|+ 1.

When B contains more than one maximal path that begins and ends in R, the above can
be applied to every maximal path. Since the number of omnians is equal to the number
of reticulations in a circuit, there are two possible matchings, which cover all reticulations
and hence leads to two possibilities for the base tree. Therefore, the maximal number
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of base-trees of N is calculated by multiplying the number of reticulations plus one of
every maximal path that begins and ends in R and multiplying that number by two to
the power the number of circuits in B. �
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Figure 18. An example of a binary phylogenetic network N for counting
the number of base trees.

Though it might seem that the upper bound of the number of base trees calculated
in the previous theorem is the exact number of base trees, this is not the case. Look at
the binary phylogenetic network N in Figure 18. Let B be the bipartite graph associated
to N . The number of omnians in N is one. With Theorem 2.13 it follows that there are
two possible matchings. In Figure 19, the two matchings are drawn twice, dashed and
in blue. In each matching the two possibilities of connecting the non-covered reticulation
are drawn in red and dashed.
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Figure 19. The two different matchings in bipartite graph B that is as-
sociated to the network in Figure 18 with all possible ways of adding the
non-covered reticulations.

Now we draw the three possible base trees from Figure 19 in the network of Figure 18
in blue, the results are displayed in Figure 20. If we simplify the base trees displayed in
Figure 20, we get the base tree shown in Figure 21. Notice that this tree represents every
base tree of Figure 20, so the binary phylogenetic network of Figure 18 has only one base
tree. Which means that Theorem 2.14 indeed gives an upper bound of the number of
base trees of a tree-based binary phylogenetic network.
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Figure 20. The binary phylogenetic network of Figure 18 in which all the
different ways of adding the non-covered reticulations are shown.
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Figure 21. The single base tree of the binary phylogenetic network of
Figure 18.
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3. Non-binary phylogenetic networks

Root

fa d e
c

b g

Figure 22. Example of a non-binary phylogenetic network

3.1. Definitions. Research has been done about non-binary phylogenetic networks, but
not on the tree-basedness of these networks. A (rooted non-binary) phylogenetic network
is a directed, acyclic graph N = (V,A) with the following properties:
- the root is a unique vertex with in-degree 0 and out-degree 1 or more;
- vertices with in-degree 1 and out-degree 0, called leaves, coloured blue in Figure 22;
- Reticulations are vertices with out-degree 1 and in-degree 2 or more, marked in pink in
Figure 22;
- vertices with in-degree 1 and out-degree 2 or more, called tree-vertices.

a) b)

Figure 23. Vertices that are of form a) will be displayed as in b).

Notice that we do not allow vertices like a) in Figure 23 in a phylogenetic network.
These kind of vertices will be displayed as b) in Figure 23.

A phylogenetic network N is called tree-based with base-tree T , when N can be ob-
tained from T via the following steps:
- Add some vertices to arcs in T . These vertices, called attachment points, have in- and
out-degree 1.
- Add arcs, called linking arcs, between pairs of attachments points and from tree-vertices
to attachment points, so that N remains binary, acyclic and so that attachment points
have in-degree or out-degree 1.
- Supress every attachment point that is not incident to a linking arc.
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Let N be a phylogenetic network and B = (U ∪ R,E) the bipartite graph that is
associated to N . Since vertex v ∈ B is of degree ≥ 0, there are no paths in B. With the
term maximal path we refer to every possible maximal path, as defined in Section 2.1, in B
seperately. For example, in Figure 25(b), there are two reticulations with degree 0 and
three possible maximal paths: (b, f, g, c, d), (e, c, g, d) and (e, f). We call K a connected
component of B, if K is a maximal path, as just defined, or a circuit in B.
Any definitions from Section 2.1 that have not been mentioned in this section, are defined
similarly as in the binary case.

3.2. Theorems. We will examine if some of theorems of Section 2.2 hold for non-binary
phylogenetic networks as well. First, we look at te stability of networks.

Theorem 3.1. A stable network N has the following property:
The child and the parents of every reticulation are tree-vertices.

Proof. The proof of this theorem is nearly equal to the proof of Proposition 2.1. Only w
is another parent of v instead of the other parent. �
So this theorem holds in both the binary and the non-binary case.

Now, the following two questions will be examined:
i) Is every stable phylogenetic network tree-based? (Corollary 2.3 in the binary case)
ii) For phylogenetic network N , is N tree-based if each reticulation of N has parents that
are all tree-vertices? (Proposition 2.2 in the binary case)

There is one single example that answers both of the questions displayed in Figure 24.

Figure 24. Counter example to statements i) and ii).

Therefore, questions i) and ii) can be answered with no. They only hold in the binary
case. Now we will proof that Theorem 2.4 of the binary case also holds in the non-binary
case.

Theorem 3.2. Given a phylogenetic network N . Let B be the bipartite graph that is
associated to N . N is tree-based if and only if there exists a matching M in B so
that | U | = |M |.

Proof. Assume there exists a matching M in B, so that all omnians are covered by M .
Then it can be proved similarly as in the binary case in Theorem 2.4, that N is tree-based.
Assume that N is tree-based. Then it can be proved partially similar as the binary case,
that there exists a matching in B that covers all omnians. The only difference is that
when an omnian has more than one out-going arc contained in a base-tree T , that only
one edge should be coloured and the rest should not be coloured in B. Then all coloured
edges in B form a matching M, so that |U | = |M |. �
Consider Hall’s Theorem (Theorem 2.6) and Theorem 3.2. Combining those two the-

orems gives a characterization for a non-binary phylogenetic network to be tree-based,
which is similar to Corollary 2.7 in the binary case.
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Corollary 3.3. Let N be a phylogenetic network and U the set of all omnians of N .
Then N is tree-based if and only if for all S ⊆ U the number of different children of S is
greater than or equal to the number of omnians in S.
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(a) The blue dashed lines
represent the matching in
b)
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(b) A matching is B
drawn in blue and
dashed

Figure 25. A partial phylogenetic network and the bipartite graph B that
is associated to N .

Theorem 2.10. (binary case) Let N be a binary phylogenetic network
and B = (U ∪ R,E) the bipartite graph associated to N . N is tree-based if and only
if B contains no maximal path which starts and ends in U .

When we look at Theorem 2.10 in the binary case, which is restated above, it might
be suspected that this would also hold in the non-binary case. We will look at a partial
phylogenetic network N , which is displayed in Figure 25(a), and the bipartite graph B
that is associated to N , which is displayed in (b). A matching is drawn in B, which
is coloured blue and dashed in Figure 25(b). We see that in B there is a maximal path
starting and ending in U : starting in b via f−c−g ending in d. Though in the binary case
this would mean (with Theorem 2.4) that N is not tree-based, we see in Figure 25(b) that
there exists a matching that covers U . With Theorem 3.2 it follows that N is tree-based.
Therefore, for a phylogenetic networkN and the bipartite graph B = (U∪R,E) associated
to N , if there is a maximal path starting and ending in U , then N can still be tree-
based. We see that Theorem 2.4 holds partially in the non-binary case, since the following
theorem does hold for the non-binary case.

Theorem 3.4. Let N be a phylogenetic network and B = (U ∪ R,E) the bipartite
graph that is associated to N . If B contains no maximal paths which start and end in U ,
then N is tree-based.

Proof. Assume that B contains no maximal paths which start and end in U . It follows that
B can contain three types of connected components: circuits, maximal paths that start
in U and end in R and maximal paths that start and end in R. When we look at every
maximal path and circuit separately, it follows similarly as in the proof of Theorem 2.10
that all three types of connected components contain a matching that covers U . With
Theorem 3.2 it follows that N is tree-based. �
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4. Conclusion and discussion

In the binary case we have seen that a network is tree-based if and only if there exists a
matching that covers all omnians in the bipartite graph associated to the network. This
theorem, combined with Hall’s theorem, gave us an even simpler classification of a tree-
based network. It turned out that a binary phylogenetic network N is tree-based if and
only if every subset S of the omnians of N has at least |S| different children. Additionally,
it was shown that every binary phylogenetic network containing at most two reticulations
is tree-based. On the other hand, there is an example of a part of a network containing
three reticulations that is not tree-based.
The most important finding is that we have characterised the group of binary phylogenetic
networks that are not tree-based. We have shown that all non-tree-based networks con-
tain an alternating path starting with an omnian, reticulation, omnian, . . ., reticulation
and ending with an omnian. With this outcome, biologists are able to check whether a
binary phylogenetic network is equal to a binary phylogenetic tree containing horizontal
arcs that represent for example gene-transfer between bacterial species.

Biologists could come across a network that is not tree-based while doing research. We
have seen that we can make non-tree-based networks tree-based by adding one tree-vertex
with a leaf attached to it for every maximal path in the bipartite graph that begins and
ends with an omnian. These leaves were not in the network of the biologist, possibly
because a species that should be in the network is already extinct or the sample that
the biologist is doing research on might be incomplete, so the sample could miss one or
more species. Moreover, our analysis gives an easy way of finding all base-trees, from
which biologists are able to check which one is suitable in reality. We have also partially
answered the question of Francis and Steel [2] about how many base trees a tree-based
network contains, since we have found an upper bound for the number of base trees of a
binary phylogenetic network.

In the non-binary case we have also found that a network is tree-based if and only if
there exists a matching that covers all omnians in the bipartite graph associated to the
network. Some theorems of the binary case did not apply in the non-binary case. For
example, not every stable non-binary phylogenetic network is tree-based. In addition,
a non-binary phylogenetic network could be not tree-based, even if all parents of every
reticulation are tree-vertices. One theorem of the binary case, however, applied partially.
Similar to the binary case, if there is no maximal path starting and ending with an om-
nian in the bipartite graph associated to the non-binary phylogenetic network, then the
network is tree-based. However, when there is a maximal path starting and ending with
an omnian in the bipartite graph associated to the non-binary phylogenetic network, we
have seen that it can still be tree-based.

After the overall process, there still remain some open questions, of which a part origi-
nates from [2]. Although we have found an upper bound for the number of base-trees of a
tree-based binary phylogenetic network, it is still unknown how many of these base trees
are isomorphic. Is there a way to determine which base trees are the same? How many
different base trees does a non-binary phylogenetic network have?
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We presume that the upper bound that is given for the number of leaves that should
be added to a non-tree-based network, in order to make it tree-based, is equal to the
minimum of leaves that should be added. But is the given upper bound equal to the
minimum of leaves that should be added? We think that this upper bound is equal to
the minimum number of leaves that should be added, but this is only a presumption that
could be subject for further research.
We have also looked at making non-tree-based networks tree-based by deleting reticula-
tion arcs and suppressing the resulting indegree-1 outdegree-1 vertex (instead of adding
leaves). For some networks it looks like this is a sufficient way, but for others it depends
if the parent and child of the suppressed vertex are reticulations or tree-vertices. Is there
a way to make every non-tree-based network tree-based, by deleting one reticulation arc
per maximal path in the associated bipartite graph that begins and ends with an omnian?

Given a binary phylogenetic network and a binary phylogenetic tree, can it be decided
in polynomial time whether or not the network is based on the tree? [2] For a given
network, we have determined the number of different matchings for every maximal path
in the associated bipartite graph B. When B contains a maximal path that begins
and ends with an omnian, the network is not tree-based. When B contains a maximal
path that begins with an omnian and ends with a reticulation, this gives us one possible
matching which covers every omnian and reticulation of this path. For every circuit in B,
there are two possible matchings, which again cover every omnian and reticulation of the
circuit. For a maximal path in B that begins and ends with a reticulation, a calculation
is presented for counting the number of different matchings. Additionally, we have seen
how many different ways there are of adding the uncovered reticulation. When there is
only one maximal path in B, we can create all the different base-trees and compare every
one of them with the given tree. However, if there is more than one maximal path in
B, where should we start with deciding which matching is correct to eventually get a
base-tree that is similar to the given tree? In my opinion, the research we have done is a
great step towards answering the question of [2] entirely. As soon as it can be decided in
polynomial time whether or not a given network is based on a given tree, it would be very
helpful for biologists, since they can test if a given tree is the correct tree. In addition,
they could use this to find out how horizontal transfers in the given tree could run and
what that would mean for the evolutionary history of a set of taxa.
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