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V. Conclusion Figure 17-19 Water storage distribution in Green Infrastructure in GBI Design — 1, GBI Design — 2 & GBI Design - 3. Figure 20 Water storage variation during rainfall in Green infrastructure
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connectivity of urban waterway inside system is the key factor in Blue x . .
nrastiuctire e e * Road Network performance - Vehicle density & Departure time

While facing a heavy rainfall, people would try to re-route their path or re-schedule their departure time when the road is submerged by exceed rainwater.

2. In Green infrastructure Design, with the same green space area, the ) ] ) _ _
Therefore, the vehicle density and departure time were calculated based on simulation result to evaluate the road network performance.

location of redundancy space is useful if it next to the waterway
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Figure 25-33 Vehicle densities distribution in 9 Design model3 in Scenario3. . Figure 34-36 Departure time during rainfall in Scenario 3.
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