

Delft University of Technology

An integrated scenario-based measuring for transportation resilience A case study of Pazhou, Guangzhou, Greater Bay Area

Lu, P.; Sun, Yimin; Nijhuis, S.

Publication date 2022 **Document Version** Final published version

Citation (APA) Lu, P., Sun, Y., & Nijhuis, S. (2022). An integrated scenario-based measuring for transportation resilience: A case study of Pazhou, Guangzhou, Greater Bay Area. Poster session presented at Urban Transitions 2022, Sitges, Spain.

Important note

To cite this publication, please use the final published version (if applicable). Please check the document version above.

Copyright Other than for strictly personal use, it is not permitted to download, forward or distribute the text or part of it, without the consent of the author(s) and/or copyright holder(s), unless the work is under an open content license such as Creative Commons.

Takedown policy

Please contact us and provide details if you believe this document breaches copyrights. We will remove access to the work immediately and investigate your claim.

This work is downloaded from Delft University of Technology For technical reasons the number of authors shown on this cover page is limited to a maximum of 10.

An integrated scenario-based measuring for transportation resilience

A case study of Pazhou, Guangzhou, Greater Bay Area

Peijun Lu (SCUT & TU Delft), Yimin Sun (SCUT) & Steffen Nijhuis (TU Delft)

華南理工大學

E-mail : scutlupj@gmail.com

TUDelft

I. Introduction

- The low-elevation landform make coastal area, especially the Guangdong-Hong Kong-Macao Greater Bay Area (GBA), more vulnerable to heavy rainstorms and surge storm in the future.
- Resilience city is an emergent concept applied in urban design model, and disaster management to deal with coastal hazards, such as **urban** flooding.
- Infrastructure Planning and Design served as a key component in improving resilience performance in GBA.
- Policy makers and urban planners need **quantitative method** to assess the transportation resilience performance and identify the optimal design model.

Research question:

Which design strategy of Green-Blue infrastructure and road network can improve transportation resilience in GBA?

III. Scenario-based Model Simulation

Disaster Definition

Figure 1 50-year rainfall and water level scenarios

Rainfall (50-year) Scenario 1 Scenario 2 Scenario 3	Scenario	rainfall	River flood	Sea Level Rise			
	Scenario1	50-year 2h design rainfall	Normal river level	Sea level in 2020			
	Scenario2	50-year 2h design rainfall	5-year flood	Sea level in 2020			
	Scenario3	50-year 2h design rainfall	5-year flood	Sea level in 2100			

Table 1 definition of three different scenarios

Design Model Definition – with the same water space area, green space area and road land area.

9 different design models were generated by 3 Green-Blue Infrastructure (GBI) Designs & 3 Road Network (RN) Designs.

High density dual network	Road Network Design – A	RN GBI Design – A Design - 1	Green-Blue Infrastructure Design - 1	3 individual parts, which connect 2 outlets with widest waterway,	LID projects was evenly distributed in area	The Gray infrastructure was designed to meet Specification for
Low density dual network	Road Network Design – B	RN Design – B BN GBI-1 + RN-A Design Model -1 CDI	Green-Blue Infrastructure Design - 2	The BI was designed as a tree structure, which the main waterway is in the middle of island,	LID projects was designed as link to connect different waterways.	Urban Drainage Engineering Planning
High density single network	Road Network Design - C	Design – C GBI-1 + GBI-2 + Design - 3 GBI-1 + GBI-2 + GBI-3 +	Green-Blue Infrastructure Design - 3	The BI was designed as single loop structure, which narrow waterway to connect the 6 outlets	LID projects was designed in the buffer of waterway	The elevation wa designed based the green-blue infrastructure.

34	
300	
250 -	