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Abstract. Remote sensing contributes valuable information to streamflow estimates. This 

paper discusses its relevance to the digital earth concept. The authors categorize the role of 

remote sensing in streamflow modelling and estimation. This paper emphasizes the 

applications and challenges of satellite-based products in streamflow modelling. Importance 

and application of streamflow models is firstly described. Then, different classifications of 

models, modelling processes and several uncertainties sources that affect models prediction 

are explained. In addition, we explore the advantages of satellite precipitation estimates in 

modelling, uncertainties in remotely sensed data and some improvement techniques. The 

connection, relationship and contribution of remote sensing for streamflow modelling to 

digital earth principle are identified. Finally, we define and illustrate the future directions and 

necessary developments of streamflow measurement by remote sensing.  

1. Introduction

The concept of Digital Earth originates from US vice president Al Gore who, in 1998, integrated and 

connected digital knowledge with the virtual representation of Earth [1]. Applications of this concept 

in the hydrology cycle can give a better representation and understanding of the streamflow 

information. Reliable streamflow measurement is important for water resources management for 

future planning and economic development strategies.   

Traditionally, streamflow is directly measured through manual or automated ground based 

instruments installed within a monitoring station. However, sparse hydrological monitoring networks 

and not enough available ground station create problems in many regions, especially developing 

countries [2]. To overcome the limited reliable hydrology data problem, satellite remote sensing is a 

suitable way or even the only way to acquire information for data-scarce areas.      

The contribution of remote sensing in providing sub-daily basis, continuous and economic 

hydrometeor data sets regardless of international borders has been well proven and recognized. The 

authors classify the roles of remote sensing in obtaining streamflow information into two main groups 

as illustrated in Figure 1: (1) streamflow modelling – remotely sensed data as “input” for a 

hydrological model [3,4], and (2) streamflow estimation – estimation of streamflow by remote sensing 

data alone without usage of any hydrological model [5].  

Unlike other previous papers that review the usage of satellite imagery in general hydrology 

application [3,4], we focus on reviewing the applications and challenges of remote sensing in 

streamflow modelling which is useful for researchers, engineers or water resources managers 

interested in this topic. Besides that, reflecting recent advances, this paper places more emphasis on 

remotely sensed data uncertainties and approaches to handling “input” uncertainties of streamflow 

modelling which is less explored in hydrological applications. Moreover, this paper identifies the 

dedication of the digital earth concept to streamflow information extraction that is crucial in water 

resources management.  
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The importance of streamflow information is briefly discussed in section two. Several remote 

sensing applications in streamflow modelling are described in section three. The main input parameter 

to model, i.e., precipitation, its uncertainties, improvement technique and future directions are 

discussed in section four. In section five, the contribution of remote sensing in streamflow estimates 

to digital earth are concisely defined. Based on this broad review, we concluded with several 

recommendations for future studies in section six. 

2. Importance of streamflow modelling

Streamflow modelling plays a vital role in water resources management including (1) assessing the 

impact of past, ongoing and future climate or land use change; (2) operational purposes like flood 

forecasting, dam and hydroelectric management; (3) integration with other models for advances 

studies such as designing flood or drought control structures using a hydraulic model, water quality 

assessment from nutrient transport models, fishery related models for aquatic life evaluation; (4) 

prediction in ungauged basin (PUB) by generating flow data at basins without monitoring station; and 

(5) scientific enquiry to improve our understanding of hydrological processes at specific regions [6].  

Flood is one of the most destructive natural disasters that bring a lot of damage to people. 

Streamflow information is very important in flood maps production for flood prevention work. The 

integration of streamflow and hydraulic model with geographical information system (GIS) is very 

common in flood mapping [7]. The modelling chain starts off with pre-processing the terrain and 

climatic input parameter with GIS and then applies into a streamflow model. Next, the results are used 

as input to hydraulic modelling to simulate the flood wave along the drainage system. Finally, the 

flood map is produced using GIS with water level information from the hydraulic model. Flood 

hazard mapping by a fully continuous hydrologic-hydraulic modelling framework was conducted at 

the Rio Torbido catchment in central Italy. It indicated a good performance with implemented 

automatic procedures [8].  

 The International Association of Hydrological Sciences (IAHS) has launched an initiative of PUB 

to improve performance of hydrological model in ungauged basins [9]. The model simulated river 

flow data at ungauged basins especially at hilly or forested areas. This is critical for water resources 

planning purposes. PUB is preliminary depending on data from gauged basins that can be applied in 

ungauged basins through an extrapolation technique. A successful evaluation of the PUB performance 

was done at Upper Mississippi River Basin (UMRB) in the United States by using a streamflow 

model, the Soil and Water Assessment tool (SWAT) [10].  

River pollution that leads to a water security problem is a common issue in many countries. Water 

quality assessment can be done by using several streamflow models such as SWAT, Hydrologic 

Simulation Program-Fotran (HSPF), Storm Water Management Model (SWMM) and others. These 

models are able to simulate the impact of urbanization, deforestration, agriculture and 

industrialization waste on rivers and helps in water quality improvement planning. Lee et al, (2010) 

[11] reported the estimation of pollution loading: biochemical oxygen demand (BOD), total nitrogen 

(TN), total phosphorus (TP) using HSPF and SWMM to investigate the urbanization effect on water 

quality in the Nogok watershed in Korea.  

Figure 1. Role of remote sensing in streamflow measurement. 
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3. Streamflow model and sources of uncertainty

Streamflow model is a mathematical computational model of hydrology processes digitally converting 

weather variables and topography conditions into river flow information [6]. Many papers providing 

detailed descriptions of modelling approaches which are categorized from an empirical to a physical 

model structure; lumped to fully distributed (spatial); and event to continuous (time) based models 

[6,12, 13]. Commonly, the selection of a suitable model is highly depending on the aim of the project 

and data availability. For example, the long-term analysis of streamflow studies requires continuous 

based model, which is enables to simulate in continuous simulation of a series of rainfall that 

incorporates more than one storm event.  

After selection of appropriate model, pre-simulation will be conducted with the use of collected 

data sets in the model. Then, model calibration is performed by selecting suitable values of model 

parameters to achieve a close imitation of the real hydrological regime of the watershed using in-situ 

discharge data sets. Validation takes place after calibration with different period of same in-situ data 

sets to test the model performance. Uncertainty analysis is a process that comes along with calibration 

to identify and reduce errors that arise during modelling and includes three main phases: 

understanding, quantification and reduction [12]. Sources of uncertainty are natural uncertainty, data 

uncertainty, model parameter uncertainty and model structure uncertainty [12]. In this paper, we are 

concerned about data uncertainty which is a result of errors in input variables that can be generated by 

remote sensing technology, such as rainfall, temperature, evapotranspiration and so on. Given that 

rainfall is the most vital input parameter that directly influences the result of simulation [14, 15], so 

this paper only reviews the aspects of rainfall in the streamflow modelling. 

4. Remotely sensed precipitation uncertainties and its improvement

Generally, remote sensing offers hydrological components information or so-called “input” 

parameters as shown in Figure 1 in digital form for streamflow modelling. The main advantage of 

space based “input” is providing continuous, huge coverage and free or low cost data to users. 

However, its accuracy is often not well known. So how can it be used to solve the hydrologic problem 

especially in the context of PUB? This section focuses on a detailed discussion of the main “input” 

parameter in modelling, precipitation, its uncertainties and improvement techniques that may 

contribute to a better understanding of hydrological processes.  

Precipitation is the most important “input” to any hydrological model. The reliability and accuracy 

of such data are always cited as serious impediments and crucial to successful modelling [14, 15]. The 

spatial and temporal variability of rainfall, sparse rain gauge distribution, monitoring station 

conditions, mountainous terrain, sensor errors and other problems could contribute to inaccuracies of 

precipitation data and may not represent the overall basin condition. Remote sensing provides an 

alternative approach for precipitation retrieval to perform streamflow modelling. Generally, publicly 

available precipitation products can be classified in four major groups: rain gauge data, single satellite 

sensor, multiple satellite sensors and combination of multiple sensors with gauge data [15]. Table 1 

lists precipitation data sets that can be freely assessed and downloaded through Internet. 

Generally, satellite based precipitation extraction is performed by (1) visible (VIS) or infrared (IR) 

sensor; (2) passive (PM) and active microwave (AM) method; (3) merging of IR and microwave data; 

and (4) precipitation radar (PR) [15]. Remote sensing technology has improved in the last decade, but 

its estimation also brings some degree of uncertainty. We can examine the impact of precipitation 

uncertainties and choose the best products. Hence, the authors recommend two main steps: (i) 

precipitation products evaluation for the identification of uncertainties and (ii) an error reduction 

procedure such as downscaling, calibration, and interpolation merged data. These steps should be 

carried out to improve the quality of modelling.  

Although the evaluation can be only conducted in areas where reliable ground-based rainfall gauge 

data or preferably radar data exist, such evaluation result will give users a general idea of uncertainties 

associated in satellite precipitation product for further applications. For instant, Duan et al. (2012) 

[16] found that version 6 TRMM 3B43 and 3b42 data were reliable (relative RMSE larger than 50%) 

in the Caspian Sea Region in Iran for most months and years during the period 1999-2003. Dinku et 

al. (2007) [17] evaluated performance of 10 different satellite rainfall data sets and divided them into 

two main group: (1) low spatial (2.5
o
) and temporal (monthly), and (2) high spatial (0.1

o
-1

o
) and 

temporal (3 hourly to 10 daily) resolution over Ethiopia in Africa and found that average RMS for 
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both groups are 28% and 46%, respectively. Downscaling improve the coarse spatial resolution of 

precipitation product to finer scale. Readers are referenced to e.g. Duan and Bastiaanssen (2013) [18] 

for the procedures for downscaling and calibration of satellite precipitation products,  

The application of satellite precipitation data for hydrological purposes is still very limited [19]. 

Evaluation of reliability and performance of different satellite precipitation data sets on hydrology 

processes studies should be conducted continuously in order to promote and assess applicability of 

those products for streamflow prediction in sparse data areas. There should be a motivation to 

improve quality of precipitation retrieval techniques. Behrangi et al. (2011) [19] evaluated the 

performance of several satellite precipitation products a) TRMM Multi-satellite Precipitation Analysis 

real time (TMPA-RT); b) TMPA bias adjusted (TMPA-V6); c) Precipitation Estimation from 

Remotely Sensed Information Using Artificial neural Network (PERSIANN); d) PERSIANN bias 

adjusted (PERSIANN-adj); e) Climate Prediction Center morphing algorithm (CMORPH) for 

streamflow modelling over Illinpis River Basin in United State. The result indicated that all products 

generate good simulation at sub-daily and monthly time-scale whereas bias adjustment products 

decrease the overestimation of both, simulated streamflow and input precipitation problems.  

Different interpolation techniques for the production of precipitation data lead to uncertainties in 

streamflow modelling, therefore the identification of the most suitable approach is necessary. The 

impact of an interpolation error can be tested by generating ensemble streamflow. Ensemble 

modelling is a technique to combine a series of base model simulations to produce more accurate 

results. Hwang et al. (2011) [20] investigate the impact of precipitation uncertainty at Animas and 

Alapaha in United State by applying ensembles of daily precipitation into Precipitation Runoff 

Modeling System (PRMS). A similar study was piloted at Pipiripau River basin in Brazil by 

integrating an ensemble of different sources of precipitation data sets into SWAT [21]. Both studies 

show that ensemble modelling of precipitation products works well for the improvement of 

streamflow simulation.   

Precipitation products comprise high spatial variability problems that lead to uncertainties [21]. 

There are two methods to reduce the space based spatial variability problem which are calibration and 

downscaling techniques [18]. Meteorological variables generated in coarse resolution by global 

climate change models (GCMs) are usually fed into a hydrological model to evaluate the impact of 

future climate on water resources. Application of GCMs as input to streamflow model is a source of 

large uncertainties [22], so GCMs should be downscaled first before used for impact studies. 

Downscaling can be done either with a statistical method (SD) that develops a statistical relationship 

between local variables and GCM climate information or with a dynamic approach (DD) which 

employs regional climate models (RCMs) [23]. An assessment of the effectiveness of three statistical 

techniques: (1) a multi-objective fuzzy-rule-based classification (MOFRBC), (2) an analog method 

(AM), and (3) the statistical downscaling model (SDSM) has been carried out to downscale 

precipitation from GCMs for Vattholmaån River basin in southeastern Sweden. The authors 

concluded that SDSM provide the best downscaled precipitation [22].  
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Table 1. Freely available global satellite precipitation data sets that can be used in streamflow 

modelling (modified from Tapiador et al., 2012 [15]).  

Class Products Spatial/ Temporal Period/source 

Single sensor GPROF2010(TMI) 

TRMM PR 

HOAPS-3(SSM/I) 

GPROF2010(AMSR-E) 

0.25
o
/daily,monthly 

0.5
o
/hourly 

0.5
o
/mothly 

0.5
o
/daily 

1997-now/[1] 

1997-now/[2] 

1987-2008/[3] 

2002-now[4] 

Multiple sensors CMORPH 

TRMM 3B41RT 

TRMM 3B42RT 

8km/30min 

0.25
o
/ hourly 

0.25
o
/3 hourly 

1998-now/[5] 

2005-now/[6] 

2005-now/[7] 

Multiple sensors 

plus gauges 

CMAP 

GPCP one degree daily 

TRMM 3B42 

TRMM 3B43 

2.5
o
/daily 

1
o
/daily 

0.25
o
/Daily 

0.25
o
/Monthly 

1979-now/[8] 

1997-2009/[9] 

1998-now/[10] 

1998-now/[10] 

5. Contribution to Digital Earth

Digital Earth (DE) is defined as a multi resolution, three-dimensional representations of the Earth [1]. 

Al Gore induced the appearances of Google Earth and Bing map application that integrate vast 

amounts of geo-referenced data. Nowadays, “the global sustainability” concept should inject into DE 

to fulfill the challenge of the world 2020 [24]. This review provides contributions to DE in three 

aspects: data, representation and environment.  

The free availability of geo-referenced data is a main concern of DE [1, 24, 25]. Remote sensing 

acts as the best tool in supplying vast amount of information about the Earth, but not all satellite 

images are available to the public, in particular the high resolution imagery. This paper provides 

several free sources for the input parameters that are necessary in the streamflow modelling. In order 

to improve our understanding of the environment that we live in, data sharing of satellite-based data 

collection should become common practice.  

Gore (1998) claimed that DE is the digital representation and cognition of the real Earth. The 

satellite sensor captures an image of the earth’s surface. Experts transform the image into useful 

hydrology components such as precipitation and evaporation in a digital form [4]. Multi sensor 

satellites provide images in the visible to microwave domain. This increases the interpretation 

capabilities and information on the environment. Therefore, water cycle systems can be represented in 

a virtual form, either at a global or regional scale.   

The main application of remote sensing in DE is monitoring the environment where rapidly 

retrieval of earth information gives advantages to monitoring the global change using various 

simulation models [26]. The global environmental issue related to the water crisis such as water 

resources scarcity and water pollution has global consequences. Here, remote sensing can assess these 

changes rapidly and provide the necessary information to the public directly through the social 

network to increase the awareness. Furthermore, long term climatic information retrieved from remote 

sensing data may be integrated into streamflow models for flood forecasting or climate change 

assessment as mentioned in section two.  

6. Conclusion and future directions

“Sustainability” has become a popular word that reminds humans to stop destroying their 

environment. Streamflow information is important for the investigation of aquatic life ecology, flood 

hazard and water quality which have a direct connection to the health of our environment. High 

quality of long term streamflow information lead to better water resources management, protection 

and restoration through the sustainable management of natural resources.  

In future work, more input parameters and a detailed review of streamflow estimation will be 

included in a paper as a primer for scientists, educators, water resources engineers and managers who 

are new and interested in the topic. Besides that, more freely assessable satellite “input” parameters 

are important to improve understanding of hydrological processes. Therefore, efforts on making 

satellite products available and giving experts the opportunity to transform them into information 

which is easily usable to streamflow modelling should be a major concern of DE. 
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Data uncertainties related to remotely sensed products cause misleading uncertainty prediction in 

hydrological model results. Consequently, it is important to integrate addition parameters, such as soil 

moisture, digital elevation model and evapotranspiration. These parameters help to reduce data 

uncertainties for satellite retrieved information that enters the hydrological model. A Framework 

development and advances in understanding streamflow should be carried out to assess the impact of 

data uncertainties on streamflow simulations. Generally, data uncertainty could be reduced by three 

major steps: a) selection of better quality input data; b) improvement of selected data by calibration 

and downscaling; and c) establishment of approaches to extract and assimilate information from 

available data through the model identification processes [27].   
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