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Abstract. This paper presents two-dimensional direct numerical simulations (DNS) of
noise generated at trailing edges (TE) with zero thickness. The simulations are conducted
specifying either no-slip or slip walls in order to investigate viscous effects. In both cases,
small amplitude disturbances are introduced close to the inflow boundary that serve as
pressure disturbances at the TE. DNS data reveals that the unsteady Kutta condition is
not satisfied, irrespective of the wall boundary condition. However, it appears that the va-
lidity of the unsteady Kutta condition is not essential for making an accurate prediction of
the far field noise. The far field pressure is predicted as a function of the surface pressure
difference using a 2-D modification of Amiet’s classical theory, and compared with the
far field pressure computed directly. Directivity plots provide evidence that the presence
of boundary layers and noise generated by an unsteady wake in the no-slip cases lead to
smearing of individual lobes, and that the downstream pointing lobes in no-slip wall cases
are probably due to nonlinear noise generation in the wake. The simulations are con-
ducted using a high-order accurate numerical method which is free of upwinding, artificial
dissipation or any form of explicit filtering, and employs a novel boundary treatment.

1 INTRODUCTION

Noise generated by unsteady flow over trailing edges contributes significantly to air-
frame noise, fan noise and other sources of sound. Therefore, a detailed understanding of
the underlying physical mechanisms in the generation of trailing-edge noise would be ben-
eficial for the design of quieter aircraft and propulsion systems. A theoretical method for
calculating the far field noise due to turbulent flow past a trailing edge (TE) was derived
in a classical paper by Amiet1. A closed-form result of the far-field pressure spectrum can
be obtained as a function of the convecting incident pressure spectrum upstream of the
TE.

The recent dramatic growth in computing power has made direct numerical simulations
(DNS) of aerodynamically-generated sound increasingly feasible. Solving the full unsteady
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Navier–Stokes equations, both the far field sound and the near field hydrodynamics can
be obtained. Thus, DNS can provide an insight into the physical mechanisms of sound
generation and potentially help to validate acoustic theories. The aim of the present
research is to use DNS data to validate Amiet’s theory. In a previous study2, it was
demonstrated that the surface pressure jump transfer function performs well for various
Mach numbers and reduced frequencies. Here, the focus lies on the radiation of the surface
pressure difference to the far field. To that end, an infinitely thin plate is considered with
either slip-walls or laminar boundary layers on each side in order to assess the importance
of viscous effects. In both cases, small amplitude disturbances are introduced close to the
inflow boundary that serve as pressure disturbances at the TE.

To allow for parametric studies, DNS are conducted in two dimensions. Amiet’s clas-
sical theory considers three-dimensional sound radiation, hence a modification of Amiet’s
theory accounting for two-dimensional sound radiation is derived. The result of the strictly
2-D theory is presented and comparisons between theoretical results and DNS data are
made. For the present investigation, a high-order accurate numerical method is chosen
which is free of upwinding, artificial dissipation or any form of explicit filtering, as de-
scribed later. A novel boundary treatment3,4 which was developed specifically for, but is
not restricted to, the current research is employed.

2 GOVERNING EQUATIONS

2.1 Theoretical Approach

In the present investigation, two-dimensional laminar flows with single-frequency dis-
turbances are investigated. Therefore, a modification of Amiet’s theory accounting for
two-dimensional sound radiation of single-frequency disturbances was derived2. Here,
only the relevant results of the derivation are presented. The two-dimensional theory is
applicable in the coordinate system x = [x1x2]

T , where x1 and x2 are the streamwise and
the wall normal directions, nondimensionalized with the semi-chord b, respectively. The
main modification to the original theory consists of replacing the 3-D Green’s function
with a 2-D Green’s function to account for radiation in two dimensions only. Inserting the
two-dimensional Green’s function into Goldstein’s formulation5 of the acoustic analogy
(neglecting viscosity and performing a Fourier transform in time) yields

p(x, ω) =
ix2ωb

4βc

∫ 0

−2

∆pt(y, ω)
1

R
H

(2)
1 {µ0 [M(y1 − x1) + R]} dy1 . (1)

where ω is the frequency, β =
√

(1−M2), R =
√

(y1 − x1)2 + β2(y2 − x2)2, and c rep-

resents the speed of sound. The reduced frequency is µ0 = ωb/(cβ2) and H
(2)
1 denotes

a first-order Hankel function of the second kind. Note that, in contrast to the original
theory, no far field approximation has been made.

From DNS the entire time-series of the total pressure difference ∆pt is available, and
(1) can be integrated directly to obtain the acoustic pressure field. In cases where only
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the incident pressure field is known, the total pressure field at the trailing edge can be
determined from the incident pressure field through a transfer function6. This surface
pressure jump transfer function has been shown to perform very well for different Mach
numbers and reduced frequencies2.

2.2 Direct Numerical Simulations

For DNS, the full compressible Navier–Stokes equations need to be solved. The fluid is
assumed to be an ideal gas with constant specific heat coefficients. Nondimensionalizing all
variables using the flow-quantities at the freestream/inflow location, the non-dimensional
continuity, momentum and the energy equations are:

∂ρ

∂t
+

∂

∂xk

(ρuk) = 0, (2)

∂

∂t
(ρui) +

∂

∂xk

[ρuiuk + pδik − τik] = Fi, (3)

∂

∂t
(ρE) +

∂

∂xk

[
ρuk

(
E +

p

ρ

)
+ qk − uiτik

]
= 0, (4)

where Fi is a volume force and the total energy is defined as E = T/ [γ(γ − 1)M2]+0.5uiui.
The stress tensor and the heat-flux vector are computed as

τik =
µ

Re

(
∂ui

∂xk

+
∂uk

∂xi

− 2

3

∂uj

∂xj

δik

)
, qk =

−µ

(γ − 1)M2PrRe

∂T

∂xk

, (5)

respectively, where the Prandtl number is assumed to be constant at Pr = 0.72, and
γ = 1.4. The molecular viscosity µ is computed using Sutherland’s law7, setting the
ratio of the Sutherland constant over freestream temperature to 0.36867. To close the
system of equations, the pressure is obtained from the non-dimensional equation of state
p = (ρT )/(γM2). In order to introduce disturbances into the boundary layers, a volume
force Fi is added to the right-hand-side of the governing equations. To minimize the sound
generation of the disturbances, a solenoidal and therefore quiet forcing is used8.

F1 =
∂φ

∂x2

, F2 = − ∂φ

∂x1

, with (6)

φ = Adist sin(ωt) ·
[
1− cos

(
(x1 − x1b

)π

x1e − x1b

)]
·
[
1− cos

(
(x2 − x2b

)π

x2e − x2b

)]
, (7)

where xib and xie are the start and end points of the forcing, respectively.

3 Numerical Method

For the analytical approach, equation (1) is integrated using a fourth-order accurate
integration. To reduce the computational cost, the plate is discretized with a non-uniform
grid, clustering most points in the vicinity of the trailing edge.
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The compressible Navier–Stokes equations, (2)-(4), are solved using a high-order ac-
curate numerical scheme free of upwinding, artificial dissipation or any type of explicit
filtering. Stability is achieved through appropriate conditioning of the governing equa-
tions, with an entropy-splitting approach for the nonlinear terms, and a Laplacian for-
mulation of the viscous and heat conduction terms. The latter is used to avoid odd-even
decoupling when using central finite-difference schemes. In addition, compatible spatial
difference operators for the interior and boundary points are employed. Further details on
the fundamental numerical approach are given in Sandham et.al.9. A nonreflecting zonal
boundary condition is used to avoid spurious pressure-oscillations from the boundaries,
in particular the outflow boundary3,4.

A thorough validation of both numerical codes was performed. The non-equidistant
integration used for the theoretical approach was shown to reproduce Amiet’s closed form
results, and it was demonstrated that the Navier–Stokes code is capable of accurately
representing the development of hydrodynamic instabilities2 .

4 RESULTS

DNS of trailing edges were conducted at two Mach numbers specifying either no-slip
walls or slip walls. In both cases, a computational domain with dimensions −2 ≤ x1 ≤
1.875 (−2 ≤ x1 ≤ 2.125 for the slip wall case) and −3.25 ≤ x2 ≤ 3.25 was chosen. The
infinitely thin plate is located at −2 ≤ y1 ≤ 0 and y2 = x2 = 0. For the no-slip wall
case, boundary layers develop on the top and bottom side of the surface which have a
displacement thickness of δ∗ = 5.85× 10−3 at the TE, resulting in Reδ∗ = 1170. The flow
in the no-slip case is discretized with 2500 and 600 non-equidistantly spaced points in the
x1- and x2-direction, respectively, with the finest resolution at the TE. In the slip wall
case, the resolution in the streamwise direction is decreased downstream of the trailing
edge because no unsteady wake forms that needs to be resolved. Therefore, only 1280
streamwise points are used. For all cases, the surface is discretized with 620 points in the
streamwise direction. A zonal characteristic boundary condition is used at the outflow (for
x1 ≥ 1.45), and a traditional sponge employing a dissipation term is used for the upper and
lower freestream boundaries (|x2| ≥ 2.5) and the inflow boundary (−2 ≤ x1 ≤ −1.875).

Time-dependent forcing is introduced at x1 = −1.8625 and x2 = 0.0025 using (6),
with Adist = 8 × 10−3. In the no-slip wall, the nondimensional forcing frequency was
set to ω = 6.4 · π for both Mach numbers because linear stability theory predicted that
Tollmien–Schlichting (TS) waves would be generated that are amplified up to the TE.
The amplitude of the pressure disturbances associated with the TS wave are smaller than
1% of the mean pressure values at the TE. In the slip wall case, no viscous instability
is present and the frequency can be chosen freely. Because the convection velocity of
disturbances is higher in the slip wall case (cu ≈ 1 vs. cu ≈ 0.4) lower forcing frequencies
were selected, namely ω = 4 ·π and ω = 2.5 ·π for M = 0.4 and M = 0.6, respectively. In
the no-slip case the above parameters result in the nondimensional parameters µ0 = 9.57
and Kx = 54.34 at M = 0.4, and µ0 = 18.85 and Kx = 50.27 at M = 0.6. For the slip

4



Richard D. Sandberg and Neil D. Sandham

Figure 1: Contours of dilatation obtained from DNS trailing edges; no-slip wall with TS waves, µ0 = 9.57,
and Kx = 54.34, with contour levels [−1 × 10−3; 1 × 10−3] (left); slip wall, µ0 = 5.98, and Kx = 12.57
with contour levels [−3× 10−5; 3× 10−5] (right); M = 0.4.

wall case, µ0 = 5.98 and Kx = 12.57, and µ0 = 7.36 and Kx = 7.85 at M = 0.4 and
M = 0.6, respectively.

For an overview of the resulting flow fields, instantaneous contours of dilatation are
shown in figures 1 and 2 for both wall boundary conditions. In the no-slip wall cases,
an unsteady wake forms downstream of the TE and the TS waves on the upper side of
the singular plate can clearly be seen. No wake forms in the slip-wall cases, hence only
the disturbances convecting downstream are visible for x1 > 0. All graphs reveal acoustic
waves generated by the scattering of the disturbances at the TE. These waves radiate in
both the positive and negative x2-directions.

In Amiet’s theory6, it is assumed that the unsteady Kutta condition holds. Until today,
there remains uncertainty regarding the accuracy of this assumption. Howe10 suggests that
it might only be used for a specific frequency range and demonstrates that the imposition
of the Kutta condition results in a considerable reduction of sound generated by convection
of disturbances past a trailing edge. Here, DNS data are used to clarify the validity of the
Kutta condition and, more importantly, to what degree the far field solution is affected
by the TE boundary condition.

Figures 3 and 4 show time-series of the total pressure difference upstream of the TE
and at the TE for DNS with no-slip and slip walls for M = 0.4 and M = 0.6. In the no-slip
wall cases, at y1 = −0.1, the total pressure differences oscillate with the forcing frequencies
and an amplitude of roughly 0.01, indicating that the TS waves can be considered linear
disturbances. At the trailing edge itself, the amplitudes of ∆pt are considerably decreased.
However, the pressure differences do not equal zero, i.e. the unsteady Kutta condition is
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Figure 2: Contours of dilatation obtained from DNS trailing edges; no-slip wall with TS waves, µ0 = 18.85,
and Kx = 50.27, with contour levels [−3×10−3; 3×10−3] (left); slip wall, µ0 = 7.36, and Kx = 7.85 with
contour levels [−1× 10−4; 1× 10−4] (right); M = 0.6.

not satisfied for either Mach number.
In the slip wall cases, upstream of the TE, the pressure difference oscillations have a

very small amplitude (≈ 9×10−4). In contrast to the viscous wall cases, the signals are not
harmonic, i.e., it appears that frequencies other than the respective forcing frequencies are
present. More importantly, the amplitudes of the pressure difference at the trailing edge
are significantly greater than at y1 = −0.1 (the amplitudes are divided by 10 for better
legibility). This is in contrast to the no-slip wall case where most likely viscous effects
in the boundary layer lead to the unsteady Kutta condition being ‘nearly’ satisfied. The
sudden increase in total pressure difference towards the trailing edge might be regarded as
a numerical issue in the calculation with a slip wall. Therefore, the DNS were repeated,
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Figure 3: Total pressure difference ∆pt from DNS for no-slip wall, ω = 6.4 · π (right), and slip wall,
ω = 4 · π (left); (- - -) y1 = −0.1, (—) y1 = 0.0, (×) y1 = −0.1 with Kutta condition imposed (slip wall
only), (◦) at y1 = 0.0 with Kutta condition imposed (slip wall only); M = 0.4.
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Figure 4: Total pressure difference ∆pt from DNS for no-slip wall, ω = 6.4 · π (right), and slip wall,
ω = 2.5 · π (left); (- - -) y1 = −0.1, (—) y1 = 0.0 (divided by 10), (×) y1 = −0.1 with Kutta condition
imposed (slip wall only), (◦) y1 = 0.0 with Kutta condition imposed (slip wall only); M = 0.6.

this time enforcing the unsteady Kutta condition at the trailing edge. From figures 3 and
4 it can be observed that imposing the unsteady Kutta condition does not considerably
alter the flow just upstream of the TE, i.e. the pressure difference oscillations at y1 = −0.1
are similar to those without Kutta condition.

The fact that the slip wall cases, in which the Kutta condition is not imposed, show
large amplitude oscillations can be used to quantify the importance of the Kutta condition.
In the following, results obtained from slip wall simulations with and without imposing
the unsteady Kutta condition are examined. When specifying no-slip walls the pressure
oscillations were harmonic, thus only the disturbance pressure associated with the forcing
frequency needs to be analyzed. However, in the slip wall cases, multiple modes appear
to be present. Therefore, in figure 5, the streamwise disturbance-pressure distribution on
the top surface is illustrated for the forcing mode and the first higher harmonic. For both
Mach numbers the mode associated with the forcing frequency is smaller in amplitude
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Figure 5: Magnitude of total disturbance pressure on top surface from DNS with slip walls at M = 0.4
and ω = 4·π (left), and M = 0.6 and ω = 2.5·π (right); (—) forcing frequency, (- - -) first higher harmonic
of forcing frequency, (◦) forcing frequency with Kutta condition imposed, (×) first higher harmonic of
forcing frequency with Kutta condition imposed.
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than the first higher harmonic up to y1 ≈ −0.175. Approaching the TE, however, the
magnitude of the fundamental mode increases dramatically and reaches an amplitude of
roughly 4.6× 10−3 when the Kutta condition is not imposed. When the unsteady Kutta
condition is imposed, the pressure magnitude decreases towards the TE after reaching a
maximum at y1 ≈ −0.05. The first higher harmonic decays up to the TE when ∆pt = 0
is enforced at the TE; however, when the pressure difference at the TE is permitted to
be non-zero, a sharp increase just upstream of the trailing edge can be observed.

With the surface pressure difference available, the acoustic pressure p can now be
predicted using (1) where ∆pt = pttop − ptbottom

, i.e. the difference of the top and bottom
surface total pressures. The results computed using 2-D theory are then compared to
the acoustic pressure predicted by DNS. In DNS the acoustic pressure was obtained by
conducting simulations over a period of at least four flow-through-times and computing
pRMS. Because of the similar magnitudes of the surface pressure of the temporal modes
associated with the forcing frequency and its first higher harmonic, the acoustic pressure
was computed from (1) for both modes in the slip wall cases. However, when using the
mode related to the first higher harmonic, the amplitude of the acoustic pressure was more
than an order of magnitude smaller than for the fundamental mode. Hence, it appears
that the amplitude of the pressure distribution in the immediate vicinity of the TE is the
dominant contributor to the far field noise, since the amplitude of the fundamental mode
is only significantly larger than that of the higher harmonic in this region. In addition,
the lower frequency is radiated more efficiently than that of the first higher harmonic.
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Figure 6: Magnitude of acoustic pressure at Rd = 1.5 for no-slip wall with µ0 = 9.57 and Kx = 54.34
(left), and slip wall with µ0 = 5.98 and Kx = 12.57 (right); (◦) |p| from (1) using ∆pt = pttop − ptbottom

from trailing edge DNS, (2) |p| from (1) using ∆pt = pttop − ptbottom
from trailing edge DNS with Kutta

condition imposed (slip wall only), (—) |p| from DNS, (- - -) |p| from DNS with Kutta condition imposed
(slip wall only); data from DNS multiplied by 2 and 4 for no-slip wall and slip wall, respectively; M = 0.4.
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Results are therefore only shown for the fundamental mode.
The resulting acoustic pressure magnitudes at Rd = 1.5 are presented in figures 6 and

7 for both Mach numbers. To facilitate comparison the amplitudes of the DNS data in
the no-slip cases were multiplied by 2 and 3 at M = 0.4 and M = 0.6, respectively, and
by 4 for both Mach numbers in the slip wall cases. Most likely the lower amplitudes of
the acoustic pressure obtained directly from DNS can be attributed to viscosity. This
assumption is substantiated by the fact that the difference in amplitude between the
(inviscid) theory and the (viscous) DNS (with no-slip walls) increases with an increase in
reduced frequency. It is well known that higher frequencies are more strongly damped by
viscosity. However, it is slightly surprising that the acoustic pressure obtained from DNS
with slip walls needs to be scaled by an even greater factor to achieve a similar amplitude
than 2-D theory. It might be due to the fact that there is no superposition of the wake
noise in the slip wall cases.

When specifying no-slip walls, the agreement of the 2-D theory with the DNS data is
reasonable in terms of the location of the maxima and minima, when considering the up-
stream inclined lobes. However, the downstream pointing lobes are much more significant
in the DNS data than predicted by theory and the lobes in the DNS are smeared. The
smearing of the lobes was attributed to the presence of the boundary layers and noise
generated by the unsteady wake2. In addition, nonlinear interaction of the TS waves with
Kelvin–Helmholtz instability waves in the wake was identified as the potential origin of
the pronounced downstream pointing lobes in the no-slip wall cases. The absence of the
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Figure 7: Magnitude of acoustic pressure at Rd = 1.5 for no-slip wall with µ0 = 18.85 and Kx = 50.27
(left), and slip wall with µ0 = 7.36 and Kx = 7.85 (right); (◦) |p| from (1) using ∆pt = pttop − ptbottom

from trailing edge DNS, (2) |p| from (1) using ∆pt = pttop − ptbottom
from trailing edge DNS with Kutta

condition imposed (slip wall only), (—) |p| from DNS, (- - -) |p| from DNS with Kutta condition imposed
(slip wall only); data from DNS multiplied by 2 and 4 for no-slip wall and slip wall, respectively; M = 0.6.
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downstream-pointing lobes in the slip wall cases (which do not exhibit an unsteady wake)
constitutes further evidence that these lobes might indeed be generated through interac-
tion of the TS waves and the wake. The overall agreement between slip wall DNS data
and 2-D theory is generally better than in the no-slip cases, i.e. no significant smearing
of the lobes can be observed, and the acoustic pressure obtained from DNS in the slip
wall cases displays a highly symmetric behavior with respect to x2 = 0, as predicted by
theory. This was expected as the slip wall simulations reflect the assumptions made when
deriving the theory (inviscid flow, the convection speed of disturbances being close to the
freestream velocity, etc.) more closely than the no-slip wall simulations.

Finally, the results of slip wall simulations with and without imposing the unsteady
Kutta condition are compared. The shape of the directivity distribution is similar regard-
less of the trailing edge boundary condition. However, when enforcing ∆pt = 0 at the TE,
the amplitude of the acoustic pressure obtained either from DNS or using 2-D theory is
decreased. It was shown in figure 5 that the surface pressure distributions for cases with
and without an explicit Kutta condition are similar up to y1 ≈ −0.05. This corroborates
the above statement that the amplitude of the pressure distribution in the immediate
vicinity of the TE is the dominant contributor to the far field noise. Nevertheless, de-
spite the large fluctuations of ∆pt at the trailing edge when the Kutta condition is not
specified, the difference in the amplitude of p is moderate. This implies that satisfaction
of the unsteady Kutta condition at the trailing edge is not crucial for making accurate
prediction of the far field noise.

5 CONCLUSIONS

Two-dimensional direct numerical simulations of infinitely thin trailing edges were con-
ducted at M = 0.4 and M = 0.6. On the surface, either no-slip or slip wall conditions were
specified. The difference in the wall boundary condition results in two distinct features
of the no-slip wall case which are not present in slip wall calculations: i) the presence
of boundary layers, and ii) the formation of an unsteady wake. Thus, by comparing the
simulations, the effects of the boundary layers and the unsteady wake on the far field
pressure can be investigated.

The DNS revealed that the unsteady Kutta condition is not satisfied, irrespective of the
wall boundary condition. For slip wall simulations, the pressure difference at the trailing
edge is considerably larger than in the no-slip wall cases. Additional DNS were conducted
with an imposed unsteady Kutta condition in order to evaluate the far field effect of the
pressure fluctuations at the trailing edge. Overall, it was found that satisfaction of the
unsteady Kutta condition at the trailing edge is not essential for making accurate pre-
diction of the far field noise. In addition, circumstantial evidence was presented showing
that the surface pressure distribution in the immediate vicinity of the TE is the dominant
contributor to the far field noise.

A comparison of data from no-slip and slip wall simulations provided further evidence
that the downstream pointing lobes in the no-slip wall cases are due to nonlinear inter-
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action of the TS waves and instability waves in the wake. Slip wall DNS data also did
not display significant smearing of the lobes, confirming that this effect is most likely
caused by the presence of boundary layers and noise generated by the unsteady wake in
the no-slip wall simulations.

This work was supported by the DTI under the MSTTAR DARP programme. Com-
puter time was partly provided by the EPSRC grant GR/S27474/01.
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