
Computer Engineering
Mekelweg 4,

2628 CD Delft
The Netherlands

http://ce.et.tudelft.nl/

2016

MSc THESIS

Implementing Virtual Address Hardware Support
on the ρ-VEX Platform

Jens Johansen

Abstract

Faculty of Electrical Engineering, Mathematics and Computer Science

The ρ-VEX is a run-time reconfigurable Very Long Instruction Word (VLIW)
processor. This unique processor allows separation of its issue lanes to form inde-
pendently operating processing cores. Switching between these configuration during
run-time allows optimizing the platform for the task(s) it is performing. Porting an
Operating System (OS) to this platform is an important step towards a software layer
that can control these reconfigurations.

All contemporary operating systems implement a virtual memory abstraction layer.
This technique makes the physical memory layout transparent to the processes hosted
by the operating system. Implementing virtual memory is impossible without hardware
support. This thesis presents the design and implementation of the addition of this
hardware to the ρ-VEX platform. The platforms unusual architecture puts specific
requirement on the memory system. The implemented hardware fully supports the
platforms abilities for static configuration and dynamic reconfiguration.

To verify that the implemented solution is able to support an OS, software is designed
that emulates the task switching and memory virtualization tasks of an OS. By running
this software it is proven that the hardware support all features required by a real OS.

Finally, the performance of the implemented hardware is measured running bench-
marks in different static configurations and several dynamic reconfiguration scenarios.
These measurements are compared and recommendations are made for performance op-
timization of real applications.

CE-MS-2016-05

Implementing Virtual Address Hardware Support
on the ρ-VEX Platform

THESIS

submitted in partial fulfillment of the
requirements for the degree of

MASTER OF SCIENCE

in

COMPUTER ENGINEERING

by

Jens Johansen
born in The Hague, The Netherlands

Computer Engineering
Department of Electrical Engineering
Faculty of Electrical Engineering, Mathematics and Computer Science
Delft University of Technology

Implementing Virtual Address Hardware Support
on the ρ-VEX Platform

by Jens Johansen

Abstract

The ρ-VEX is a run-time reconfigurable VLIW processor. This unique processor allows
separation of its issue lanes to form independently operating processing cores. Switching between
these configuration during run-time allows optimizing the platform for the task(s) it is performing.
Porting an OS to this platform is an important step towards a software layer that can control
these reconfigurations.

All contemporary operating systems implement a virtual memory abstraction layer. This
technique makes the physical memory layout transparent to the processes hosted by the operat-
ing system. Implementing virtual memory is impossible without hardware support. This thesis
presents the design and implementation of the addition of this hardware to the ρ-VEX platform.
The platforms unusual architecture puts specific requirement on the memory system. The im-
plemented hardware fully supports the platforms abilities for static configuration and dynamic
reconfiguration.

To verify that the implemented solution is able to support an OS, software is designed that
emulates the task switching and memory virtualization tasks of an OS. By running this software
it is proven that the hardware support all features required by a real OS.

Finally, the performance of the implemented hardware is measured running benchmarks
in different static configurations and several dynamic reconfiguration scenarios. These mea-
surements are compared and recommendations are made for performance optimization of real
applications.

Laboratory : Computer Engineering
Codenumber : CE-MS-2016-05

Committee Members :

Advisor: dr. ir. Stephan Wong, CE, TU Delft

Chairperson: dr. ir. Stephan Wong, CE, TU Delft

Member: dr. ir. Arjan van Genderen, CE, TU Delft

Member: dr. ir. René van Leuken, CAS, TU Delft

i

ii

Dedicated to my family and friends

iii

iv

Contents

List of Figures xi

List of Tables xiii

List of Acronyms xvi

Acknowledgements xvii

1 Introduction 1

1.1 Context . 1

1.2 Problem Statement, Project Goals, and Methodology 2

1.3 Overview . 3

2 Background 5

2.1 Field-Programmable Gate Arrays (FPGAs) 5

2.2 Softcore Processors . 7

2.3 VLIW Processors . 7

2.4 The ρ-VEX Reconfigurable VLIW Processor 8

2.4.1 The VEX Instruction Set Architecture 9

2.4.2 Static Configuration . 9

2.4.3 Dynamic Reconfiguration . 9

2.4.4 Reconfigurable Cache . 10

2.5 Memory Management . 10

2.5.1 Virtual Address Spaces . 10

2.5.2 Page Tables . 12

2.5.3 Hardware Support . 13

2.5.4 Operating System Support . 14

2.5.5 Caches and Virtual Memory . 14

2.5.6 Memory Management in Multiprocessor Systems 15

2.6 Minimal functional requirements of an Memory Management Unit (MMU) 16

2.7 Conclusion . 16

3 Architecture 19

3.1 Address Translation Hardware . 19

3.2 Caches . 20

3.3 Memory Management Terminology . 21

3.4 Virtual Memory Hierarchies . 22

3.4.1 PIPT Caches . 23

3.4.2 VIVT Caches . 23

3.4.3 VIVT Cache with Dual Directory 24

v

3.4.4 VIVT Multilevel Cache . 27

3.4.5 VIPT Caches . 28

3.5 Memory Hierarchy selection . 30

3.6 Translation Look-aside Buffer (TLB) Management 31

3.7 Optimization Opportunities . 33

3.8 MMU Support for Dynamic Reconfiguration 33

3.9 Conclusion . 36

4 Hardware Implementation 37

4.1 Implementation Platform . 37

4.2 Interface to the Processor and Cache . 38

4.3 Cache Modifications . 41

4.4 Translation Look-aside Buffer . 42

4.4.1 Context Accessible Memory . 43

4.4.2 TLB States . 44

4.4.3 Stale CAM Entries . 47

4.4.4 Large and Global Pages . 47

4.4.5 TLB Coherence . 49

4.5 Table Walk Hardware . 50

4.6 Design-time Configurability . 50

4.7 Run-time Reconfigurability . 52

4.7.1 Coalescing data TLBs . 52

4.7.2 TLB update direction . 52

4.8 Page Table Organization . 54

4.8.1 Page Table Entries . 55

4.9 Register Interface . 55

4.10 Conclusion . 58

5 Functional Verification 59

5.1 Verification Software Design . 59

5.2 Verification Software Evaluation . 62

5.3 Implementation Bugs . 63

5.4 Conclusion . 64

6 Measurements 65

6.1 Area utilization and Operating Frequency 65

6.2 Static Configuration Evaluation . 66

6.3 Dynamic Reconfiguration Evaluation . 68

6.3.1 Synthetic Benchmarks . 70

6.3.2 Lane Expansion . 71

6.3.3 Lane Reduction . 72

6.4 Conclusion . 73

vi

7 Conclusion 75
7.1 Summary . 75
7.2 Main Contributions . 77
7.3 Additional Work . 80
7.4 Future Work . 80

Bibliography 85

A Reconfig 2015 Paper 87

vii

viii

List of Figures

2.1 Configurable logic block . 6

2.2 FPGA structure . 7

2.3 This diagram shows how a program divided into pages is mapped to
physical memory frames. The image also illustrates that not all parts of
the program need to be in memory at the same time. Some pages can
be located on backing storage such as a hard drive. 11

2.4 Multilevel page table . 13

3.1 Simplified diagram of an MMU including the bare minimum components
and the most important signals. 20

3.2 This diagram shows how memory locations map to cache entries for a
direct mapped cache and a 2-way set associative cache. 21

3.3 The distinction between a virtual and physical cache. 22

3.4 Extended pipeline required for a PIPT cache hierarchy. This pipeline
has seven stages compared to five for the original pipeline. 23

3.5 The address layout of physical and virtual addresses when dealing with
a virtual dual directory cache. 25

3.6 Schematic diagram of a Virtually Indexed Virtually Tagged (VIVT) dual
directory cache. This image shows how the cache can be accessed by both
virtual and physical addresses. 26

3.7 Schematic diagram of a miss in a VIVT dual directory cache. When
a miss is encountered, first the translated address is used to index the
dual directory to check if the data was already present under a different
synonym. 26

3.8 This diagram depicts the paired eviction problem. VPN and PPN refer
to virtual- and physical page numbers, which are referred to as tags in
this thesis. This diagram is taken from [1]. 27

3.9 Cache hierarchy with a virtual first level cache and a physical second
level cache. The L2 cache hides most of the cost of the dual directory. . 28

3.10 Schematic diagram of how the Central Processing Unit (CPU) accesses
a Virtually Indexed Physically Tagged (VIPT) cache. 29

3.11 In a VIPT cache CPU access and bus access can be done as long as the
cache size (per way of associativity) is not greater than the page size. . . 29

3.12 This diagram illustrates how the cache blocks can be combined as sets
forming larger caches when pipelanes are combined. 31

3.13 Powerstone benchmark results for different cache sizes. The y-axis de-
notes the data cache miss percentage. 32

3.14 This diagram shows the memory hierarchy of the Intel Core i7 proces-
sor. This diagram illustrates that multi-core processors generally have
a separate MMU for each core. This image is taken from [2]. 35

4.1 The ML605 development board . 38

ix

4.2 An example of a System-on-Chip (SOC) based on the Gaisler Research
Library (GRLIB) platform. 38

4.3 This diagram shows where the MMU is situated in the memory hierarchy.
Also shown are the most important internal and interface signals. 39

4.4 Timing diagram of the instruction fetch interface of the ρ-VEX. 42

4.5 Simplified connection diagram of the TLB. 43

4.6 This diagram shows how deeper and wider Content Addressable Mem-
ories (CAMs) are build from multiple smaller CAMs implemented in
Block RAMs (BRAMs). 43

4.7 Simplified state diagram of the TLB. 45

4.8 This diagram shows how the TLB matches global and large pages by
treating parts of the input as don’t care. 49

4.9 Simplified state diagram of the Table Walker (TW). 51

4.10 The network that routes virtual tags to each TLB in a group of coupled
lanes. A similar network is used to route the associated physical tag
back to the lane that issued the read or write operation. 53

4.11 This diagram gives an example of how requests for data address map-
pings are distributed over a group of coupled lanes. In this example,
lane 1 issues a data read or write. The virtual tag is routed to all TLBs
by the input routing network. How it is routed is based on the read and
write enable signals, which can only be asserted by one of the coupled
lanes. TLB 3 turns out to hold the requested physical tag. The tag is
then distributed to all coupled cache block by the output routing network. 53

4.12 The division of addresses into L1 and L2 tags and the page offset is
based on the sizes of regular and large pages. 55

4.13 Page table entries for the first and second level of the Page Table (PT). 55

4.14 Overview of all the control registers added for the MMU and the layout
of their fields. An explanation of the fields and their function is given in
Section 4.9. 57

5.1 This diagram shows the physical memory layout of the verification soft-
ware. Also shown how a virtual address space of one of the benchmarks
is mapped to physical addresses. 61

5.2 This is a waveform of the ρ-VEX running the verification software.
Shown is the enable signal for the MMU for the four different hard-
ware contexts. This image visualizes the preemptive task switching and
pagefaulting in the software. Only one context is active at a time, occu-
pying the entire core. The notches occur when a pagefault is serviced.
These are handles in kernel mode in which the MMU is bypassed. Note
that this is taken from an earlier version of the test software which re-
lied on hardware context switches. The version used for this thesis uses
software contexts running on a single hardware context. This was done
to support eight processes instead of four. 61

x

6.1 These graphs show the number of TLB misses encountered when running
the verification software on different static configurations of the ρ-VEX. 68

6.2 This graph shows how the verification software’s memory utilization rises
with increased page size due to internal fragmentation of the code. Note
that the increase is extreme in this case because the included benchmarks
only use one or two pages. for larger programs the increase will be less
significant. 69

6.3 These diagrams give a schematic representation of the page access pat-
terns of the two benchmarks designed to measure the the performance
effects of dynamic reconfiguration on the MMU. 70

6.4 The blocks in this diagram depict an 8-issue ρ-VEX core which can be
divided into maximum of four 2-issue cores. The diagram depicts the
two scenarios used for the measurements presented in Section 6.3.2. . . . 71

6.5 Results of the lane expansion comparison for the two different bench-
marks. The experiments are performed on a ρ-VEX configured with a
page size of 4 KiB and 8 entry deep TLBs. 72

6.6 This diagram illustrates the scenario of the lane reduction experiments. 73
6.7 Results of the lane reduction experiments. The experiments are per-

formed on a ρ-VEX configured with a page size of 4 KiB and a migration
period of 8000 (user mode) cycles, running the benchmark that exhibits
the moving page access pattern. 74

xi

xii

List of Tables

2.1 Static configuration parameters supported by the ρ-VEX processor . . . 9

3.1 The advantages and drawbacks of the memory hierarchies discussed in
this chapter. 32

4.1 Overview of the bit flags which are maintained in the page table. 56
4.2 This table lists all possible values for the flush mode field in the MMU CR. 58

6.1 This table compares the resource utilization of the ρ-VEX system that
incorporates the memory management hardware to the baseline imple-
mentation. 66

6.2 Performance results of the MMU for different page sizes and TLB depths.
These numbers were obtained by running eight Powerstone benchmarks
in the software described in Section 5.1 in 8-issue mode with a task
switching period of 10000 cycles. 69

6.3 The same test results as in Table 6.2 but run on a 2-issue ρ-VEX 70

xiii

xiv

List of Acronyms

ASIC Application-Specific Integrated Circuit

ASID Address Space Identifier

BRAM Block RAM

CAM Content Addressable Memory

CE Computer Engineering

CLB Configurable Logic Block

CPU Central Processing Unit

DDR Double Data Rate

DSP Digital Signal Processing

EEMCS Electrical Engineering, Mathematics and Computer Science

FPGA Field-Programmable Gate Array

GRLIB Gaisler Research Library

HDL Hardware Description Language

ILP Instruction Level Parallelism

IC Integrated Circuit

IP Intellectual Property

ISA Instruction Set Architecture

ISR Interrupt Service Routine

LUT Lookup Table

MMU Memory Management Unit

NOP No Operation

NRE Non-Recurring Engineering

OS Operating System

PT Page Table

PTE Page Table Entry

PTP PT Pointer

xv

PIPT Physically Indexed Physically Tagged

PIVT Physically Indexed Virtually Tagged

PC Program Counter

PTP Page Table Pointer

RAM Random Access Memory

RFI Return from Interrupt

SOC System-on-Chip

TLB Translation Look-aside Buffer

TLP Thread Level Parallelism

TW Table Walker

UART Universal Asynchronous Receiver/Transmitter

USB Universal Synchronous Bus

VEX VLIW Example

VHDL VHSIC HDL

VIPT Virtually Indexed Physically Tagged

VIVT Virtually Indexed Virtually Tagged

VLIW Very Long Instruction Word

xvi

Acknowledgements

There are a number of people that helped and supported me in the course of this project.
First of all, I would like to thank my supervisor, Stephan Wong, for granting me the
opportunity to work on this cool project. During the course of this project he helped
me to maintain a high level view of the project but also helped me by discussing some
low-level implementation issues.

I also want to express my thanks to my fellow students Klaas and Hugo who have
been a lot of fun to hang out with the last year. We all started around the same time
working on the ρ-VEX platform which gave us the really useful opportunity to reflect
on each others projects.

Jeroen, thank you for rewriting the entire core and providing many useful tools. This
gave me an excellent starting point for my implementation. Your skills and productivity
puts the rest of us to shame.

Finally I would like to thank Joost and Anthony for guiding me through this process.
You have spent a lot of time helping me with this project even though you had plenty
of other stuff to do. Joost especially for proofreading my entire thesis report, which is
much more than I would have dared to ask.

Jens Johansen
Delft, The Netherlands
February 5, 2016

xvii

xviii

Introduction 1
This thesis describes the design and implementation of hardware support for virtual
memory on the ρ-VEX processing platform. In this chapter, the context of this project
is explained and the target platform is introduced. Subsequently, the problem statement
and the goals for this project are defined. In the last part of this chapter the structure
of the rest of this report is outlined.

1.1 Context

Computers have shown an astronomic increase in computing power since the advent
of the electronic computer in the first half of the 20th century. Since the transition
to integrated circuits, technology scaling has been one of the main driving forces of
this development. Shrinking transistors allowed increasingly more complex system to
be realized while signal propagation delays decreased. This increase in raw processing
power has made computer processors very power hungry devices. These devices dissipate
so much energy that cooling has become a serious challenge.

This is one of the reasons why traditional processor architecture has shown dimin-
ishing returns in performance increase. One of the industries solutions was the move to
multiprocessor designs. However, it has proven difficult to write programs that make
efficient use of these resources. These circumstances push the development of new pro-
cessing paradigms.

Reconfigurable computing is one of these paradigms. In a reconfigurable computing
platform, some aspects of the hardware such as the processor or interconnection network
can be changed. This allows adapting the system resources to a specific task while, or
just before it is executed. Traditionally, implementations could either be implemented
in silicon, which has the best performance but is static and can never be modified. Or
alternatively, a software solution could be created, which is flexible but often orders of
magnitudes slower. Reconfigurable computing tries to find a middle ground between
these approaches, combining the performance of hardware while not completely fixating
the implementation.

Liquid architectures is one of the main research topics of the Computer Engineering
(CE) group. The ρ-VEX processor [3] is one of the active projects in this direction It
was initially designed to be used a a co-processor in heterogeneous processing platforms
such as the MOLEN machine [4]. However, after years of extending the ρ-VEX, it is now
a experimental processing platform that is developed at its own. This thesis project is
conducted in the context of the larger ρ-VEX project.

The ρ-VEX is a dynamically reconfigurable Very Long Instruction Word (VLIW)
processor. It can separate its issue lanes which can form separate processing cores that
can operate independently. Being able to switch between these configurations during

1

2 CHAPTER 1. INTRODUCTION

run-time allows the processor to adapt to its work load. The control layer responsible
for this task is currently not yet developed. A logical place for such a control layer
would be at the Operating System (OS) level. The hardware to fully support an OS
such as Linux is not completely implemented in the ρ-VEX platform. More specifically,
the hardware required for virtual addressing, an feature present in every contemporary
OS, needs to be designed and implemented.

1.2 Problem Statement, Project Goals, and Methodology

In the development of the ρ-VEX platform, porting an OS such as Linux is an importing
step towards maturity. All full-fledged contemporary OS’s implements a virtual memory
abstraction layer. It is impossible to implement virtual memory without hardware
support. The problem statement for this thesis project therefore is:

How to implement hardware support for virtual memory on the ρ-VEX platform?

To answer this question, it is first necessary to investigate what solutions already exist
and which are suitable for the ρ-VEX platform. Because the ρ-VEX is a experimental
processor, it has properties which are not encountered in other systems. Its dynamic
reconfigurable nature has implication for the memory subsystem. This requires design-
ing novel hardware for the Memory Management Unit (MMU) which is able to support
this feature. This leads to the first goal of this project:

(1) Designing and implementing memory translation hardware for the ρ-VEX platform.

To reach this goal, the following approach will be taken:

• Perform a literature survey to catalogue existing memory virtualization techniques
and architectures.

• Identify how the ρ-VEX’s unique features impact the design of the MMU.

• Select an architecture best suited for the ρ-VEX based on its target application,
implementation platform, and its unique features.

• Design the interface of the virtual memory hardware to the the core and the cache.

• Design and implementation the hardware components and integrate them with the
rest of the ρ-VEX system.

This project is an crucial step towards porting an OS to the platform. Therefore,
it is essential that the hardware designed in the course of this projects meets the
requirements posed by an OS. Because there is no OS port available to test with at this
time, another method must be derived to ascertain it does. The second goal therefore
is:

1.3. OVERVIEW 3

(2) Proving that the platform is able to support an OS which implements virtual memory.

The following methodology will be applied to reach the second goal:

• Compile a list of the bare minimum features the platform must posses to support
an OS.

• Design and write software which emulates the function of an OS and relies on the
MMU for the previously specified hardware support.

• Run the verification software on modified ρ-VEX system on the an Field-
Programmable Gate Array (FPGA).

Because the ρ-VEX is currently the only dynamically reconfigurable VLIW processor,
this thesis also describes the first implementation of an MMU for such a system. There-
fore, an investigation will be made into how the performance of the virtual memory
hardware is affected by dynamically reconfiguring the ρ-VEX. This leads to the final goal:

(3) Measuring how the implementation performs in different static configurations and
dynamic reconfiguration scenarios

The steps toward this goal will be:

• Select or create benchmarks which intensively use the virtual memory hardware of
the ρ-VEX system.

• Measure and compare the performance of different static configurations of the ρ-
VEX MMU.

• Measure and compare the performance of the virtual address hardware in different
dynamic reconfiguration scenarios.

1.3 Overview

In Chapter 2, background topics are discussed and related work is presented. Chapter 3
details the design of the MMU on a conceptual level and discusses the architectural
decisions. In Chapter 4, the low-level implementations of the different components are
explained. Chapter 5 tries to prove that the implemented hardware is actually able
to support an OS. This is done by running software on the system that interfaces
in a similar way with the hardware as an OS would. The chapter also evaluates the
implementation cost in terms of area and performance penalty. Chapter 6 evaluates the
implementation comparing performance and area increase. Additionally, a performance
comparison is made between several configurations of the system. Finally, the chapter
explores how the virtualization hardware performs in different dynamic reconfiguration
scenarios. Chapter 7 summarizes the project, lists the main contributions, and suggests
future work.

4 CHAPTER 1. INTRODUCTION

Background 2
In this chapter, some preliminary topics will be discussed that are related to the ρ-VEX
Memory Management Unit (MMU). The goal of this chapter is to introduce or refresh
some of the topics that are important in understanding the background and goal of the
project.

In Section 2.1, Field-Programmable Gate Arrays (FPGAs) will be introduced which
is the technology that servers as the platform for this project. The application domain
within this platform is softcore processors. These will be explained in Section 2.2. Sec-
tion 2.3 is about Very Long Instruction Word (VLIW) processors, the class the ρ-VEX
processor falls in. Subsequently, in Section 2.4 the ρ-VEX itself and its unique features
are discussed. In Section 2.5, an overview of the concept of memory management and
different options for implementation are given. Finally, in Section 2.6, a list is compiled
of the minimal set of functions that an MMU should posses to support an Operating
System (OS).

2.1 FPGAs

An FPGA is a chip of which the functionality can be reconfigured after production or in
the field. This technology allows designers to describe the desired behaviour of the chip
using a Hardware Description Language (HDL) such as Verilog or VHSIC HDL (VHDL)
in a similar manner to software design. This description is then synthesized by a software
tool which converts the high-level description into a bit stream which is uploaded to the
FPGA. The bit stream is a binary file that holds the setting for each configurable element
in the chip. All configurable resources are configured and connected in such a way that
the FPGA as a whole behaves similarly to the description in the HDL.

FPGAs fill a traditional gap between Application-Specific Integrated Circuits
(ASICs) and software run on a general purpose processor. ASICs are the fastest so-
lution for computationally intensive applications because they are specifically tailored
and can employ a large degree of parallelism. However, their production is only viable
in high volumes due to the expensive masks used in the photolithographic production
process and the high Non-Recurring Engineering (NRE) cost. Software solutions, on
the other hand, are relatively cheap and easy to implement but can be slow due to its
sequential nature. FPGAs combine the parallel processing power of ASICs with the ease
of implementation of software. There are of course some drawbacks to FPGAs since
they have not replaced the alternatives. The reconfigurable nature of FPGAs incurs a
high price in overhead regarding Integrated Circuit (IC) area utilization. Often designs
take up to 20 times as much area as a functional equivalent ASIC implementation [5].
Another drawback is that because of the reconfigurable routing, path delays are larger
than in an ASIC. This makes typical FPGA implementations an order of magnitude

5

6 CHAPTER 2. BACKGROUND

Figure 2.1: Configurable logic block

slower than their ASIC counterpart in terms of operating frequency. When comparing
FPGAs to a solution implemented in software, the increased performance comes at the
the price of more expensive ICs and higher development costs.

FPGAs are used often as a prototyping platform when designing ASICs. Because of
the high cost of producing ICs, it is not possible to have multiple design cycles in silicon.
Another application is in high performance embedded systems which have are produced
in volumes which are to low for custom ASICs. Often a combination is made between
a microprocessor running software accelerated by custom hardware implemented on an
FPGA. This enables moving only the computationally intensive parts of the application
to reconfigurable fabric while the rest can be implemented in software. This keeps the
price of the solution low because a much smaller capacity FPGA is required. Hybrid ICs
exist that combine reconfigurable fabric with a microprocessor. Alternatively it is also
possible to implement the processor entirely in reconfigurable fabric. This is referred to
as a softcore processor.

FPGAs consist of a large number of Configurable Logic Blocks (CLBs) on a die
together with a reconfigurable interconnect. In their simplest form, a logic block consists
of a Lookup Table (LUT) whose output is connected to a flip-flop. The LUT is basically
a truth table that can be filled at when the FPGA is programmed. Depending on
its contents it fulfils a certain combinational function on its inputs. The output is
either synchronous or asynchronous depending on the whether the output flip-flop is
bypassed. Figure 2.1 depicts the CLB described. The CLBs present in an FPGA are
embedded in a programmable interconnect. This enables the output of any CLB to be
connected to any other CLB on the chip. Combining the CLB allows creating much
more complex combinatorial functions than a single CLB can perform. In Figure 2.2 the
CLBs are shown together with the reconfigurable interconnect. When the flip-flops are
also incorporated, a finite automaton can be created. Computability theory dictates that
this can be used to solve any problem which is computable [6]. Since the introduction
of FPGAs in the eighties the amount of transistors on silicon dies has risen significantly.
This allowed manufacturers to include additional resources on their FPGAs such as
Block RAMs (BRAMs) and multipliers. While these units can also be created from
reconfigurable fabric, these types components are so commonly used that it makes sense
to implement them statically, which saves die area and increases their performance.

2.2. SOFTCORE PROCESSORS 7

Figure 2.2: FPGA structure

2.2 Softcore Processors

As explained in Section 2.1, it is not always efficient to implement an entire application
in reconfigurable hardware. Parts that are sequential in nature often do not benefit from
implementing them on a FPGA. Combined with the relative high cost of FPGA ICs it
is more effective to move only the most critical parts of the application to reconfigurable
hardware. The rest of the application can be performed in software running on a pro-
cessor. A general-purpose processor can be combined with the FPGA in one of three
ways:

• A FPGA IC with a separate processor together on a circuit board.

• A hybric IC which combines a hard-wired processor with reconfigurable fabric.

• A FPGA IC where a part is configured as a softcore processor.

The advantage of the first two methods is that, because the processor is implemented
directly in silicon, the operating frequency can be much higher than in a softcore proces-
sor. The last two methods share the advantage that the the core and the reconfigurable
fabric are tightly coupled because they are on the same die. This enables high speed data
transfer between them because the signals do not have to go off-chip. The softcore might
seem like the inferior solution because it is inefficient in die size and it has a significantly
lower operating frequency than the other two options. However, its power comes from
its customizability. A softcore can be tailored to the specific application. For instance,
custom instructions can be added if required, or an entire additional core can be added
after a system has already been designed.

2.3 VLIW Processors

Processors are sequential machines by nature. They perform operations on data dictated
by a stream of instructions. There are basically two approaches to speed up this pro-

8 CHAPTER 2. BACKGROUND

cess. The operating frequency can be increased, decreasing the time to execute a single
instruction Or alternatively, more instructions can be executed every clock cycle, raising
the Instruction Level Parallelism (ILP).

A VLIW processor is a processor that uses compiler techniques to improve per-
formance in the latter way. Contemporary general-purpose Central Processing Units
(CPUs) are of the superscalar class. These types of processors try to increase the ILP
by dynamically checking data dependencies and executing instructions concurrently and
sometimes out of order. This process is referred to as dynamic instruction scheduling,
which is a complex process and requires extensive hardware support. Because of the
complexity and high cost of implementing such a system it is generally not used for
softcore processors.

An alternative way is to have the compiler extract the ILP from the program, stat-
ically, at compile time. This moves the effort from the processor to the compiler. The
major drawback of this approach is that programs need to be compiled specifically for a
certain platform, thus impeding code portability. As a result of this, VLIW processors
are most useful in an embedded system where the software and hardware are usually tai-
lored to each other and the target application. VLIW (softcore) processors can achieve
high performance for a low price especially in applications which have a high level op
parallelism such as Digital Signal Processing (DSP) applications.

2.4 The ρ-VEX Reconfigurable VLIW Processor

The previous sections of this chapter have introduced the concepts of softcores and VLIW
processors in general. Now the target platform for this thesis can be discussed, the ρ-
VEX processor. ρ-VEX stands for reconfigurable VLIW Example (VEX) which refers to
the ability of the processor to be statically configured and dynamically reconfigured. The
precise meaning of these terms will be explained in the following subsections. The ρ-VEX
processor is not the first VLIW softcore processor. The first appearance in literature
of such a processor is the Spyder introduced in [7] in 1993. Other implementations are
presented in [8] [9] [10]. All of these implementations suffer from one of the following
drawbacks:

• It relies on a closed source compiler or processor design.

• Lack of good toolchain support.

• There is limited possibility for parametric customization or extensibility.

The ρ-VEX processor was introduced in [3] in 2008. The processor is entirely de-
veloped by students and Ph.D. candidates at the Computer Engineering group at the
Electrical Engineering, Mathematics and Computer Science (EEMCS) faculty at the TU
Delft. Currently the ρ-VEX system is in its third version. After the first implementation
was finished, a lot of major improvements have been made to the system. These in-
clude pipelining, dynamic reconfiguration capabilities, caches, integration to the GRLIB
platform [11], several compiler back-ends, and a Linux port.

2.4. THE ρ-VEX RECONFIGURABLE VLIW PROCESSOR 9

2.4.1 The VEX Instruction Set Architecture

The ρ-VEX processor is based around the VEX Instruction Set Architecture (ISA).
This ISA is introduced as an example ISA in [12]. This simplified example ISA is in turn
loosely modelled on the Lx platform by HP and STMicroelectronics [13]. HP created
a C compiler and simulation system that is freely available at [14]. Unfortunately, this
compiler is closed source.

The VEX ISA is well suited for parametrically configurable softcores because it is
highly flexible. Many aspects of the architecture can be specified as parameters. This
includes the number of issue lanes, the number and type of functional units, and the
size of the register file. The compiler also fully supports these configuration and outputs
code which is tailored to the specified configuration. By using the simulation system, the
execution times of a program can be evaluated for different architectural configurations.
This enables determining the optimal configuration of a core for a specific application.

2.4.2 Static Configuration

Complying with the rationale of the VEX system to enable the processor to be configured
optimally for a specific application, the ρ-VEX also supports a large amount of architec-
tural parameters. The design parameters currently supported by the ρ-VEX processor
are given in Table 2.1.

Table 2.1: Static configuration parameters supported by the ρ-VEX processor

Resource Parameters

General Issue Width, number of hardware contexts,
Functional units Number, type and location of functional units, supported operations
Register file Register file size
Interconnect presence of forwarding logic, memory bandwidth
Caches presence of caches, cache size, cache line size

2.4.3 Dynamic Reconfiguration

The aspect that is most innovative about the ρ-VEX processor is its capability to be
dynamically reconfigured. This feature is first introduced in [15]. Dynamic reconfigu-
ration entails splitting and merging cores creating VLIW processors with narrower or
wider issue widths during runtime.

In the default setup of the current version of the ρ-VEX, the core is configured as a
single wide 8-issue VLIW processor. This core can be split up into a maximum of four 2-
issue cores. These cores can execute processes completely independent of the other cores.
The possible configurations are one 8-issue, two 4-issues, four 2-issue, or a combination of
two 2-issues and one 4-issue. These different combinations allow the core to adapt to the
application during runtime. When a problem which has high ILP must be solved quickly,
the core can be configured as a wide vector processor, thereby drastically reducing the
number of cycles required for program completion. If there is not enough ILP to fill all
the issue slots and a core executes a large amount of No Operations (NOPs), the core

10 CHAPTER 2. BACKGROUND

can be split into two or more smaller ones. This allows multiple processes to run in
parallel, increasing the processors Thread Level Parallelism (TLP)

When the decision is made to split the core, the original process can continue on
a narrower core while starting another process on the core that has become available.
When no processes are available to run on the newly freed core, it can be shut down.
The core is accompanied by a cache that can split and merge in a similar fashion. One
of the following subsections will give a detailed description of the cache.

At some point in the future development of the ρ-VEX system, a software layer will
be developed which will decide during runtime when the core will be merged or split. To
facilitate this, a proper port of the Linux operating system must be developed first. The
implementation of a MMU is indispensable to accomplish that. One major contribution
that has been made already in [16] is generic binaries. These pieces of executable code are
suitable to be run on any configuration of the ρ-VEX independent of the issue-width.
Without this technique multiple versions of programs must be available for different
configurations, which must be switched upon a reconfiguration.

2.4.4 Reconfigurable Cache

The ρ-VEX core is accompanied by a cache memory that has properties similar to the
core regarding dynamic reconfiguration. In the standard configuration, the cache consists
of four blocks which each have their own port for reading and writing. This is required
for the most demanding scenario in which the processor is divided in four 2-issue blocks.
When two or more smaller cores are merged into a larger one, their respective cache
blocks merge in the same way. The coalesced core can access data and instructions
located in any of these blocks. This effectively creates larger caches when less cores are
active. This technique allows re-purposing of the otherwise unused cache blocks.

2.5 Memory Management

In this section, the advantages of incorporating a memory management system in a com-
puter are discussed, as well as the techniques used to provide dynamic address translation
functionality to the processor.

2.5.1 Virtual Address Spaces

In a system without memory management and address translation, the programs exe-
cuted by the processor directly use physical memory addresses to access code and data.
This means that programs require a contiguous memory segment and either runtime
relocation or position independent code. Because every program can access the entire
memory, running multiple programs concurrently is dangerous when one of the programs
is flawed. When a program erroneously accesses memory outside its designated region, it
can destroy others programs or their data. A program can even overwrite the operating
system OS’s code or data structures.

In a system which does use address translation, each process has its own virtual
address space. This address space is exclusive to the process and is independent of

2.5. MEMORY MANAGEMENT 11

Figure 2.3: This diagram shows how a program divided into pages is mapped to physical
memory frames. The image also illustrates that not all parts of the program need to be
in memory at the same time. Some pages can be located on backing storage such as a
hard drive.

the physical address range both in mapping and in size. The only restriction is the
amount of memory addressable by the the bit width used for addresses. The mapping
between virtual addresses and physical ones is generated by the OS while the translation
of addresses for instruction fetching and data access is done dynamically by the memory
management unit. Mapping between virtual and physical addresses is done for blocks
of memory of fixed size called pages and frames respectively. This means that, the least
significant part of the virtual and physical address, are the same.

The OS thus divides the address space of a program into regular sized block, called
pages, and maps these to frames of the same size in the physical memory. The frames
the pages are mapped to do not have to be contiguous. This enables more efficient
use of the memory since programs can be loaded into the memory even when there is
no contiguous area of free memory available. Another advantage of paging is that not
all pages of a program need to reside in memory for while a program is running. The
OS simply maps pages to memory when they are needed, a technique called demand
paging. This can reduce the memory footprint of a process dramatically and allow more
processes to be loaded concurrently. Programs can even be started without any part
loaded into memory, requesting the pages it needs to be loaded whenever it accesses
them. Another advantage of demand paging is that programs which are larger than the
physical memory can be run on the system. This is accomplished by swapping its pages

12 CHAPTER 2. BACKGROUND

in and out of memory to the backing storage which is usually comprised of a magnetic
disk memory. In Figure 2.4 a diagram shows how a programs is mapped from its private
virtual address space to the physical main memory.

Because the OS creates the mapping of addresses for each process, it can ensure
that programs can not access memory allocated to other programs. In this way, paging
also enables memory protection. Moreover, it also facilitates shared memory simply
by mapping pages of different processes to the same frame. This is very useful for
shared data segments or shared libraries, which have to be present in memory only once.
Contemporary OS’s use this feature for a technique called copy-on-write. This entails
sharing memory resources between threads as long as they do not modify the data.
Duplicating the data is postponed until one of the thread performs a write.

Summarizing, address translating through paging has the following advantages:

• Programs larger than the physical memory can be executed.

• Significant reduction of memory usage by demand paging, allowing more concurrent
processes.

• Memory protection is implicit due to process specific address mappings.

• The ability to share sections of memory between processes enabling shared data
segments, shared libraries, and copy-on-write protocols.

2.5.2 Page Tables

The mappings between virtual pages and physical frames created by the OS and refer-
enced by the MMU are stored in a data structure called a Page Table (PT). A PT is
maintained for each process running on the CPU and these are stored in main memory.
Usually, a special register holds the address of the page table and must be updated to-
gether with the rest of the context when a process switch occurs. As the name indicates,
PTs are tables which hold physical tags which are indexed by virtual tags creating a
one-to-one or sometimes many-to-one mapping between them. When PTs are imple-
mented as one large table they can consume a lot of memory. In a system using a 32 bit
addresses and 4kB pages, the PT needs to hold a mapping for 232 − 212 = 220 different
pages. Assuming a PT entry is 4 bytes this amounts to 4 MB. Because the OS needs one
for every process this can quickly become a large burden, especially for smaller systems
or systems running a lot of processes. Most systems solve this by implementing a mul-
tilevel PT [17]. Figure 2.4 depicts a multilevel page table with two levels. An address
lookup in such a table is performed as follows. First, the most significant part of the
tag is used to index the outer table often called Page Directory. This lookup returns the
address of a the second level called Page Table which holds physical tags. This table is
then indexed with the least significant part of the tag, resulting in the address of the
requested frame. Finally, the offset part of the address is added to the physical tag,
resulting in the memory location of the requested instruction or word of data. When the
entire two level PT is present in memory, there is no advantage in memory usage over
a single level PT. However, a typical process uses only use a part of the total memory
range. This combined with the technique of Demand Paging as explained in Section 2.5

2.5. MEMORY MANAGEMENT 13

Level 1 Tag

Level 1 PTE

Level 2 PTE

Level 1 Page Table
(Page Directory) Level 2 Page Table

Physical Tag Page O�set

Page Table Pointer

Virtual Address

Physical Address

Level 2 Tag Page O�set

Figure 2.4: Multilevel page table

makes it possible for the system to only allocate the tables which are actually used. The
OS can thus start by only allocating space for the Page Directory Table and extend the
PT with Page Tables when they are referenced. The two level table as described is how
32 bit systems often deal with the page table. For 64 bit systems however, two levels do
not suffice and PTs with more levels are used.

2.5.3 Hardware Support

As already described in Section 2.5, the OS generates mappings between virtual pages
and physical frames. It does this often on demand and distributes the program through
memory based on which frames are free. When all of the memory is occupied, it can
swap out another page and invalidate its mapping. The OS stores its valid mappings in a
data structure called a PT which itself also resides in main memory. When an address is
issued by the processor to fetch an instruction or to access data, the memory management
unit accesses the PT in memory to find the pages location in memory. This process is
often performed dynamically by a component called a Table Walker (TW). The base
address of the frame is then added to the offset within the page/frame to determine the
location of the instruction or data. Because of this process, memory accesses requires
one or multiple memory accesses to the PT before the requested instruction or word of
data can be retrieved. Having to perform this procedure for every memory access would
increase the memory latency of the system unacceptably. To mitigate this overhead,
a small cache memory, called a Translation Look-aside Buffer (TLB), is used to store
mappings from the PT. Most systems implement their TLB(s) as a fully associative
cache, sometimes referred to as a Content Addressable Memory (CAM). Unlike Random
Access Memory (RAM) in which an address is supplied and the memory returns the
data entry at that location, in a CAM a data word is supplied and the entire memory
is searched checking for a match. The CAM then returns the address where the data
was found and/or a piece of associated data. This type of memory is expensive in terms

14 CHAPTER 2. BACKGROUND

of area and power consumption, so the size of TLBs is often kept small. In the general
case in which the CPU issues an address which falls in a page which mapping is cached,
the translation can be performed in a single cycle. When the TLB does not hold the
translation, it needs to update its content stalling the processor for some time.

Some systems exist in which multiple levels of TLBs exist. These configurations
usually have very small single cycle TLBs and larger ones that are referenced in case the
higher level miss. These larger ones then do not need to be single cycle and therefore
not fully associative.

2.5.4 Operating System Support

While memory management and address translation is transparent to user programs
running on the processor, this is not the case for the operating system. Since one of
the main tasks of the operating system is to allocate resources to programs running on
the processor, it also divides the main memory between them. While the translation
of memory addresses is done automatically in hardware, the allocation and deallocation
of memory is done on a higher level in software by the operating system. This means
that in virtually all modern systems, the MMU reads address mapping from the PT
autonomously but relies on the processor to update it when a mapping is not present.
When this occurs, the MMU issues an interrupt signal, notifying the processor it is
unable to continue. This triggers an Interrupt Service Routine (ISR) containing code to
load the requested page into main memory and to update the corresponding entry in the
PT. When the control flow is given back to the original program the memory access is
reissued and the TW should now find the mapping in the updated PT.

Besides the address mapping, the PT usually also contains bit-flags to keep track of
access right and other page properties. Among these flags are bits used to mark a page
as dirty and accessed. These bits denote whether a page is modified or accessed recently.
This information can help the OS decide which pages are good candidates for swapping
and whether a page must be written back to memory or can simply be invalidated. These
bits are set by the TW hardware.

This division of work between the OS and the MMU holds for the majority of sys-
tems. However there are also systems which approach the problem differently. Some
(lightweight) systems rely on the OS to update the TLB and do not have a TW. One
example of such a system is the ST200 microprocessor closely related to the ρ-VEX
[18]. This approach saves hardware resources by moving a task to software but increases
latency of a TLB miss. When such a system encounters a TLB miss, an ISR must be
invoked to perform the table walk in software.

2.5.5 Caches and Virtual Memory

The operating speed of processors and their memory have not been developing at the
same rate. Historically processor speed has increased at a faster rate than memory speed,
therefore the gap between them has kept increasing since the early days of computers
[19]. This development has lead to a situation where memory accesses have become
the bottleneck for processors in a lot applications. To mitigate this problem, a smaller
but faster memory is placed in between the processor and the main memory, called a

2.5. MEMORY MANAGEMENT 15

cache, which holds a fraction of the main memory. Due to the principles of spacial and
temporal locality in most programs, sections of the memory can often be loaded once
and referenced multiple times, leading to a lower average memory access latency. All but
the most basic contemporary processors incorporate a cache memory. For a complete
discussion of the topic of caches caches refer to [20].

At some point in the memory hierarchy, between the address issued by the processor
and the physical main memory, the address must be translated. This leaves the cache
somewhere in the middle and thus raises the question whether the cache should use
virtual or physical addresses. It is also possible to create hybrid caches in which the part
of the address used to index the cache and the part used to check for a hit, referred to
as the tag, differ in the sense that one is virtual and the other is physical.

Purely virtual caches have the main advantage that address translation is only re-
quired when the cache misses and new data has to be be brought in from the main
memory. In the general case of a cache hit, the address translation hardware is not
needed. This relaxes the latency requirements of the TLB. The major drawback of
this approach is the possibility of synonyms inside the cache. A synonym occurs when
different virtual pages map to the same physical frame. When a write is performed us-
ing one of the virtual translations, the other becomes outdated. To enforce coherence,
synonyms must either be avoided or a mechanism to update them dynamically must be
implemented [21].

Physical caches do not suffer from this problem allowing easy coherency maintenance.
Their main drawback is that the address translation step needs to be performed before
every cache access. This increases the latency of the fetch and write-back stages of a
CPU pipeline. To avoid lowering the operating frequency extra pipeline stages must be
inserted. This increases the pipeline latency which in turn increases the branch penalty.
A detailed discussion of the different types of caches these design choices yield can be
found in Section 3.4.

2.5.6 Memory Management in Multiprocessor Systems

Supporting virtual addressing in a multiprocessor system is more involved then in a
uniprocessor system. These complications stem from potential coherency problems which
arise in a system with multiple caches and TLBs [1]. Since a single ρ-VEX core can be
configured as multiple independent processors which have private caches and TLBs, a
system with a single ρ-VEX core is actually a multiprocessor system.

Coherence maintenance schemes always operate on system wide physical addresses.
Whether a directory based scheme is used or, more often, a snooping based protocol.
Since virtual caches use local virtual addresses to store its contents, some reverse trans-
lation mechanism is required to translate the physical addresses to virtual ones. Such a
mechanism is complicated and thus costly to implement.

Including multiple TLBs in a computing system introduces the same problem as when
multiple caches are present. Each processor in a multiprocessing system has its own set
of TLBs. When one of the processors allocates or deallocates a page and modifies a
process’ PT, all TLB entries holding that translations must be updated or invalidated.
Most system enforce this using a mechanism referred to as TLB shootdowns [22]. When a

16 CHAPTER 2. BACKGROUND

processor updates a PT, it uses interprocessor interrupts to stall the other cores present
in the system. When all other cores are stalled, the initiating core modifies the PT.
After it releases the other cores, they can invalidate the affected entries in their TLBs.
This technique is described in detail in [23].

The memory hierarchy in a multiprocessing system is often divided in multiple layers
of caches. Often each processor have at least one level of private cache. Higher cache
levels can sometimes be shared among the different cores. It is not uncommon to have a
layer of private virtual cache close to the processors, and a shared layer of physical cache
memory. The current implementation of the ρ-VEX uses a single layer of cache memory.

2.6 Minimal functional requirements of an MMU

This section list the absolute minimal functionality an MMU should offer to support an
OS implementing a virtual addressing scheme. The list is composed based on several
books and articles [17] [24] [25]. In Chapter 5 the final implementation will evaluated
based on these functionalities.

Minimal functional requirements

1. Autonomous address translation of mappings stored in the TLB.1

2. Automatic checking of access rights (read/write and protection level) on every page
access.

3. A way to insert entries in the TLB; either a software interface or an TW unit.

4. In case of a hardware managed TLB, a mechanism to stall the core upon a table
walk and a clearly defined PT layout.

5. A mechanism to issue a trap when a page fault or access violation occus.

6. A software interface to flush TLB entries.

7. A mechanism to bypass the MMU for system initialization and kernel code that is
executed in physical address space.

2.7 Conclusion

In this chapter, first some background information about the implementation platform
for the project was discussed. The first section of the chapter explained how FPGAs work
and what their benefits are. Subsequently, it was explained how processors, referred to

1Note that the addition of a TLB is not strictly necessary since the MMU could access the PT
instead on every translation request. However since this requires multiple memory accesses to serve a
single access requested by the CPU this effectively multiplies the systems memory latency by the number
of PT levels. Since this cost is unacceptable the addition of a TLB is regarded as a strict necessity.

2.7. CONCLUSION 17

as softcore, can be implemented in this technology. In the following section, the general
concept of VLIW processors and their advantages were explained.

This established the basis that allowed for the introduction of the ρ-VEX processor.
The ρ-VEX is a VLIW softcore processor implemented in the reconfigurable fabric of
an FPGA. Being a VLIW processor, the ρ-VEX issues instruction in bundles of two or
more. This increases the ILP and thereby the performance of application with sufficient
levels of parallelism.

The ρ-VEX can be configured in a number of ways at design-time. This enables tailor-
ing the ρ-VEX system to an specific application, optimizing performance and minimizing
area. Besides these static configuration parameters, the ρ-VEX is also dynamically re-
configurable during run-time. This allows the ρ-VEX processor to switch between a
single wide VLIW processor or multiple smaller cores. This feature enables running a
single process with with high ILP or multiple processes with less parallelism, thereby
increasing TLP. Being able to switch between these configurations has implications for
the memory system. The ρ-VEX system already features a cache that supports the core
in each possible configuration. One of the challenges of this thesis project is to design
and implement an MMU with similar properties.

The second part of this chapter explained the key concepts of virtual memory using
paging. In a system that supports paging, each process has its own virtual address
space. The mapping of this address space to physical memory is controlled by the OS
and is transparent to user programs. The translation of addresses is done dynamically
by dedicated hardware called the MMU. The MMU contains multiple caches called
TLBs which are used to cache the virtual to physical mappings. The address mappings
created by the OS are stored in main memory in a process specific data structure called a
PT. When an address is referenced that is not contained in the TLB, another hardware
component called the Table Walker (TW) searches the PT for the missing translation.
When the translation is not present in the PT, the TW generates an interrupt to call
for OS intervention. The OS then invokes a routine that bring the missing page into
memory and updates the PT.

In the last section of this chapter, a listing was made of the minimum set of functions
that virtual address hardware should posses to support an OS. In Chapter 5, this list is
revisited and used to evaluate the final implementation.

18 CHAPTER 2. BACKGROUND

Architecture 3
In Chapter 2, the background for this project was explained. The ρ-VEX processor
was introduced an its unique features were explained. Then an overview of the subject
of memory management was given. The required hardware support was discussed, the
division of work between hardware and software, and the data structure used to hold
each process set of address mappings, the Page Table (PT).

In this chapter, the architectural design for the ρ-VEX Memory Management Unit
(MMU) will be described. All the important high-level design decisions will be explained
and substantiated. In Section 3.1, an overview of the MMUs components and the most
important signals connecting them is given. Subsequently in Section 3.2, a quick overview
of caches and related terminology is treated, which is essential knowledge to understand
the following sections. For the same reason, in Section 3.3, the terminology used in
relation to memory management is clarified. In Section 3.4, the most important high-
level decision problem is outlined. This will determine where in the memory hierarchy
the Translation Look-aside Buffers (TLBs) are placed. The solution space is explored,
and in Section 3.5, one architecture is selected. The way the TLB will be managed
will be explained in Section 3.6 Then in Section 3.8, the unique requirements for the
ρ-VEX MMU will be explained. This is essentially what distinguish the MMU presented
in this thesis from general MMUs. Finally, in Section 3.7 a number of other unique
optimizations are proposed, which are possible in the ρ-VEX system.

3.1 Address Translation Hardware

In Figure 3.1 a very simple diagram is shown depicting the bare minimum components
required in a MMU, that supports hardware TLB management. Also depicted are the
most important internal signals and the interface to its tightly coupled neighbours, the
core and the memory.

The core supplies the MMU with virtual page numbers of every memory location it
wants to access. This part of the address is referred to as the tag. Physical tags are
translated to virtual tags dynamically by the MMU. Recall from Section 2.5 that the
rest of the address, called the index, is the same for both physical and virtual addresses.
The TLB checks its internal cache if it contains the requested mapping and if so, passes
it on to the memory. The memory can then perform the memory operation based on
the translated address.

If the TLB does not have the requested mapping, the TLB stalls the core and signals
a miss to the Table Walker (TW) which then searchers the PT to look if the requested
page has a mapping and is actually held in memory. If the TW is able to find a valid
mapping, it updates the TLB signalling it the processor can continue.

In case the TW does not find a valid mapping, a page fault trap is generated and

19

20 CHAPTER 3. ARCHITECTURE

control is handed to the Operating System (OS) which then can load the page into
memory and update the PT. When the OS returns the control, the Program Counter
(PC) is reset to the instruction containing the memory access that caused the page fault.
The whole procedure above is repeated but now the TW will find the new mapping in
the PT so it can update the TLB and the program can continue.

When the Central Processing Unit (CPU) switches to kernel mode to run the
Interrupt Service Routine (ISR) which is responsible for updating the PT, it either
bypasses the MMU entirely, executing in physical mode, using physical addresses. Or
alternatively, it use a separate PT which is used exclusively for kernel code, containing
pages that are never swapped out. Both these techniques ensure that no page faults
are encountered when servicing an earlier fault. Which of these techniques the OS uses
differs, but most contemporary OS’s use the second technique and also execute kernel
code using virtual addresses.

3.2 Caches

In Section 3.1, the concept of caches was introduced. While the assumption is made that
the reader has basic knowledge of computer architecture, the operation of a cache will
be briefly explained because it is required to understand the discussion in the following
sections.

Caches are used to hold a subset of the main memory fast accessible storage. Because
the size of caches limited, some mapping is required from main memory entries to cache
entries. In the simplest form caches are directly mapped. In this system the cache
address is the address in main memory modulo the size of the cache. This means that
main memory addresses contend for the same location in the cache if the stride between
them is the size of the cache. Address are divided in an index and a tag, which are the
lower and higher slices of the address respectively. When the core performs a memory
access, the index is used to select which cache entry to access. Each cache entry holds
a tag which is compared to the tag of the issued address. When these two match, the
indexed cache location holds the requested data. If they do not match, another memory
location is cached in that entry. If this happens the data must be retrieved from main

Figure 3.1: Simplified diagram of an MMU including the bare minimum components and
the most important signals.

3.3. MEMORY MANAGEMENT TERMINOLOGY 21

Figure 3.2: This diagram shows how memory locations map to cache entries for a direct
mapped cache and a 2-way set associative cache.

memory and the cache updated. Caches can also be fully- or set-associative which
means that a memory location can be mapped to different cache entries. This allows
more freedom but requires multiple comparator circuits in the cache to compare multiple
tags in parallel. Figure 3.2 shows how memory locations are mapped to cache entries for
a direct mapped and 2-way set associative cache. For a more extensive discussion about
different types of caches refer to [20].

3.3 Memory Management Terminology

The convolution of cache systems and virtual memory systems is complicated by the
fact that both use the term tag when referring to the most significant part of a memory
address. While they refer to the same general concept, it is not always necessarily the
case that they refer to the exact same slice of the address. In fact there are many systems
in which they differ. For instance in the ST231 processor which is based on a similar
Instruction Set Architecture (ISA) as the ρ-VEX processor, the page size is fixed at 8
kB while the size of the instruction cache is 32 kB (directly mapped) [18]. This leads to
a 19 bit page tag and a 17 bit cache tag. In the ρ-VEX system both the page size and
the cache sizes are parametric so both tags can refer to different slices of the address
in different configurations. While it is possible to refer to the page tag as the virtual
or physical page number, the term tag is used to comply with literature. Which tag is
referred to is either specified or should be clear from the context.

This indistinction does not exist for the least significant part of the address. When
referring to this part of the address in the context of caches, the term index is used
because it is used as an index to the cache. In a page context, it is referred to as the
(page) offset.

22 CHAPTER 3. ARCHITECTURE

CPU

Cache

Main

Memory

TLB

CPU

Cache

Main

Memory

TLB

Physically Indexed

Physically Tagged

(PIPT)

Virtually Indexed

Virtually Tagged

(VIVT)

Physical Addresses

Virtual Addresses

Figure 3.3: The distinction between a virtual and physical cache.

3.4 Virtual Memory Hierarchies

When adding virtual memory support to a processor, one of the first high-level decisions
to address is where in the memory hierarchy the address translation will take place.
Almost all contemporary processors include cache memories and these can be accessed
with either virtual or physical addresses. Figure 3.3 illustrates the difference between
the two hierarchies. The current implementation of the ρ-VEX has a single level of cache
memory with separate caches for instructions and data. Another property of the ρ-VEX
which is important to take into account is that the processor can be split into multiple
cores with separate caches, which creates the need for cache coherence. The decision
to place the caches in virtual address space increases the complexity of cache coherence
protocols significantly [1]. This is because cache coherence is based on system wide phys-
ical addresses while the data in the caches is indexed based on local physical addresses.
This discrepancy raises the need for a reverse address translation mechanism which both
increases the complexity and area footprint of bus based coherency mechanisms.

Caches are indexed with the bottom part of an address and subsequently the top part
of the address, the tag, is compared with the tag stored in the cache. This is a check
to see whether the instruction or data corresponding to the requested address is present
in the cache. These two parts of the address can be both taken from virtual or physical
addresses, but it is also possible to index a cache with a virtual address and compare
physical tags and vice versa. This leads to four possible combinations of indices and tags.
In the rest of this thesis abbreviations are used to refer to these types of caches. For
instance a cache which is physically indexed and physically tagged is called a Physically
Indexed Physically Tagged (PIPT) cache. In the following sections, the advantages and
disadvantages of the different types of caches are explained and the type best suited for
the ρ-VEX system is selected.

3.4. VIRTUAL MEMORY HIERARCHIES 23

Figure 3.4: Extended pipeline required for a PIPT cache hierarchy. This pipeline has
seven stages compared to five for the original pipeline.

3.4.1 PIPT Caches

In a PIPT cache hierarchy address translation is performed before the cache lookup. This
places the MMU between the core and the cache. The advantage of this configuration is
that the cache does not have to be modified since the virtual address space used inside
the core is not extended to the cache. Another advantage is that coherency mechanisms
are easy to implement because the cache holds system wide physical addresses which
are the same for all cores. The main drawback of the PIPT cache is that the address
translation hardware is in the critical path for memory accesses. This means that the
latency for fetching instructions and data becomes larger. This can lead to a lower
operating frequency or an extra pipeline stage. The diagram in Figure 3.4 shows how
the ρ-VEX pipeline would look if a PIPT cache would be implemented. Both the fetch
and execute stage would be extended to allow the address translation to take place in an
extra cycle. While this probably would not decrease the operating frequency. However,
the pipelines latency would increase by two clock cycles, leading to higher penalties for
pipeline flushes on branching.

3.4.2 VIVT Caches

In a Virtually Indexed Virtually Tagged (VIVT) cache, the cache is more tightly coupled
to the processor than to the memory. This means that the cache is indexed by and
contains only virtual addresses. Only when the cache misses, these are translated to
physical addresses to update the cache from the main memory. This means that the
whole address translation process and the associated latency is avoided in the general
case where the cache hits. Because of this, the VIVT cache is potentially the best
configuration performance wise. This aspect also relaxes the performance constrains of
the TLB. Since TLB lookups do not occur every cycle but only on cache misses, it is
no longer a necessity that the address translation is completed in a single clock cycle.
Additionally, it also allows multiple cores to share a single TLB without a significant
performance penalty. However, this type of cache introduces quite a few difficulties,
especially in the case of a multiprocessor system.

24 CHAPTER 3. ARCHITECTURE

One of the issues of VIVT caches are the occurrence of homonyms. A homonym
occurs when address mappings of different processes map the same virtual address to
different physical addresses. A mechanism to distinguish between these needs to be
implemented to avoid flushing the entire cache when a process switch occurs. One
solution to this problem is to include an Address Space Identifier (ASID) with each TLB
entry. Each process is also assigned an ASID and the TLB only hits when the active
process’ ASID matches with that of the entry.

A more difficult problem of VIVT caches is the synonym problem. This occurs when
different processes map different virtual addresses to the same physical address. This
can happen when two processes use the same library or share a section of memory for
data sharing. When one of the cache entries is updated, the other one becomes outdated.
Normal coherency mechanisms do not detect this because it is not directly apparent that
the two entries refer to the same physical memory location. Most systems deal with this
problem by not allowing synonyms to exist in the cache at the same time. This entails
performing a reverse translation each time a cache entry is updated. When the reverse
translation hits, the synonym is flushed from the cache.

A related issue concerning VIVT caches is maintaining coherency between caches of
different CPUs in a multi-core system. Coherency schemes enforce coherency on system
wide physical addresses. Therefore the reverse translation hardware is also required to
implement bus snooping cache coherency mechanisms.

Even more issues exist. In a VIVT system, not every memory access goes through
the TLB. This means that access right bits need to be stored in the cache together with
every entry. Other cache configurations simply store these in the TLB together with the
address mapping. While this is a minor issue compared to the ones previously described,
it does lead to a larger cache footprint.

Another issue related to storing access permissions inside the cache is that cache
data can become invalid when a pages access rights are changed. When this happens
the cache must be flushed [21] which can result in a substantial performance penalty.

Because the ρ-VEX can be configured as multiple individual cores, it must be con-
sidered a multicore system. This means that, if the choice is made for a VIVT cache,
the synonym problem within a single cache block and between cache block needs to be
solved. In the following sections two different methods that are able to cope with these
problems are presented.

3.4.3 VIVT Cache with Dual Directory

As previously explained, the main problem in a VIVT cache is that the use of virtual ad-
dresses complicates maintaining cache coherence both within and between cache blocks.
The external coherency problem stems from the fact that the cache is accessed with vir-
tual addresses by the CPU while the bus snooping mechanism uses physical addresses.
Indexing the cache with a virtual address leads to another entry than when it is indexed
with a physical address. Figure 3.5 illustrates this problem. The part of the address
that is used to index the cache which is different a virtual and physical address, i.e., falls

3.4. VIRTUAL MEMORY HIERARCHIES 25

Figure 3.5: The address layout of physical and virtual addresses when dealing with a
virtual dual directory cache.

outside the page offset, are called superset bits 1.
The solution explained in this section solves both coherency problems by expanding

the cache with a dual directory and is taken from [26]. The term dual directory refers to
a second tag memory for accesses using physical addresses. This secondary tag memory
is used by the bus snooping system and holds physical tags for coherency operations.
Additionally, this memory also holds pointers to each entry’s location in the caches data
memory. In Figure 3.6 the components in such a system are illustrated. Whenever a
coherency operation must be performed, the bus snooping system uses the dual directory
to check if the entry is present in the cache. When the dual directory hits, the data-
and virtual tag memories are updated or invalidated using the virtual pointer found in
the dual directory. Note that only the superset bits need to be maintained to store the
virtual pointer in the dual directory.

Besides supporting bus based coherence protocols, the dual directory can also be
used to prevent inserting synonyms in the cache. Whenever the cache misses, the virtual
address is translated to a physical one. This physical address is then used to index the
dual directory. If the dual directory hits, this means that the data is already in the
cache under a different synonym, which is called a short miss. In this case, the data is
already present in the cache and can simply be be moved. See Figure 3.7 for a schematic
depiction of this situation.

Besides the added cost of implementing a dual directory, this mechanism has a serious
drawback which affects effective cache utilization. This problem is referred to as paired
eviction. Every entry in the cache must have a valid backpointer in the dual directory.
Therefore it can happen that when replacing a cache entry, its corresponding entry in
the dual directory clashes with another entry. When this happens the entry in the
dual directory and its corresponding cache entry need to be removed from the cache.

1When the part of the address used to index the cache falls completely within the page offset, i.e., the
cache size (per way of associativity) is not larger then the page size, the problem is circumvented and
the VIVT cache can be turned into an Virtually Indexed Physically Tagged (VIPT) cache which will be
discussed later.

26 CHAPTER 3. ARCHITECTURE

Figure 3.6: Schematic diagram of a VIVT dual directory cache. This image shows how
the cache can be accessed by both virtual and physical addresses.

Figure 3.7: Schematic diagram of a miss in a VIVT dual directory cache. When a miss
is encountered, first the translated address is used to index the dual directory to check
if the data was already present under a different synonym.

In this situation, a single cache miss requires replacing two cache entries. See Figure
3.8 for an example and a graphical representation of the paired eviction problem. The
effective cache occupancy due to paired eviction is at most N

2∗N−1 where N is the number
of superset bits. This relation is proved in [27]. In a system with 4 KiB pages and a
16 KiB caches addresses have two superset bits. This is a realistic scenario for ρ-VEX
configuration and leads leads to an effective cache occupancy of 67%. When the cache

3.4. VIRTUAL MEMORY HIERARCHIES 27

0000
0001
0010
0011
0100
0101
0110
0111
1000
1001
1010
1011
1100
1101
1110
1111

0000
0001
0010
0011
0100
0101
0110
0111
1000
1001
1010
1011
1100
1101
1110
1111

VPN Page displacement PPN Page displacement

p p p p x x 1 1 d d d dv v v v y y 1 1 d d d d

Binding of main
and dual directory

entries for
superset 11

Main
directory

Dual
directory

Superset bits of the VPN
Superset bits of the PPN

y
x

Figure 3.8: This diagram depicts the paired eviction problem. VPN and PPN refer to
virtual- and physical page numbers, which are referred to as tags in this thesis. This
diagram is taken from [1].

size rises in relation to the page size, the effective cache occupation drops and approaches
50%

3.4.4 VIVT Multilevel Cache

Literature suggest that a second level (L2) cache can easily solve all problems associated
with virtual caches [1] [28]. In a single level virtual cache system the cost of the dual
directory significantly increases the area of the cache due to having to maintain two tag
memories. When a second level physical cache is present, the dual directory is almost
entirely in place already. The added cost is only in keeping backpointers to the location
of the L2 entries in the L1 cache. This means that the only addition to both tag memories
is the superset bits of the translated address. In Figure 3.9 a schematic is shown of the
two cache levels and their main components.

Several restrictions must be enforced to make this scheme work. Implementing a
write through policy for the L1 cache ensures that the data in both levels is coherent
with each other. This allows maintaining coherency only on the physical L2 cache as
long as invalidations are propagated to the L1 one cache using the backpointers stored in
the L2 cache. The synonym problem is solved in the same way as in the dual directory
scheme with a single level of cache. When the L1 cache misses, the address is translated
and the L2 cache is checked if the requested data is present under a synonym. When this
is the case, updating the pointers in the L1 and L2 cache is sufficient. When accessing

28 CHAPTER 3. ARCHITECTURE

P

Bus

Tag
Memory

Data
Memory

Bus
Monitor

L2 Physical Cache

Tag
Memory

Data
Memory

Write
Bu�er

TLBL1 Virtual Cache

Figure 3.9: Cache hierarchy with a virtual first level cache and a physical second level
cache. The L2 cache hides most of the cost of the dual directory.

the L1 cache, the address is always translated in parallel in case the L1 cache misses.
The paired eviction problem also exists in this configuration. However, since the L2

cache is usually larger than the L1 cache, not all L2 entries are also present in L1. This
means that often when replacing a L2 entry, there is no associated L1 entry. When the
L2 cache is set associative, the replacement policy can also prefer entries that are not
present in the first level.

3.4.5 VIPT Caches

VIPT caches are a intermediate solution between pure physical and virtual caches. In
this configuration the cache is indexed directly with the virtual index. This means
that the cache lookup can start directly when the memory address becomes available in
the fetch or execute stage for instruction and data accesses respectively. Therefore an
extended pipeline is not required as with a PIPT cache. The tag memory in the cache
does contains physical tags. The translation of the virtual tag issued by the core can
occur in the same cycle as the cache lookup. When both the cache tag and the page tag
are available, a comparison is made leading to either a TLB hit or miss. This process is
shown graphically in Figure 3.10.

This type of cache allows bus access to maintain cache coherence without reverse
translation if a restriction is placed on the cache size. When the size of the cache is
at most the page size2, it can be indexed by both virtual and physical addresses. This
is possible because with this restriction, only the page offset is used as index which is

3.4. VIRTUAL MEMORY HIERARCHIES 29

CPU

Tag

Memory

Data

Memory
TLB

indextag

Phsysical Tag

Virtual Tag

Clock Cycle

Boundary

Virtual Index

=

Hit Data

Figure 3.10: Schematic diagram of how the CPU accesses a VIPT cache.

Figure 3.11: In a VIPT cache CPU access and bus access can be done as long as the
cache size (per way of associativity) is not greater than the page size.

identical for virtual and physical addresses. Figure 3.11 shows how such a system works.
Besides allowing easy cache coherence, the VIPT cache also avoids the synonym

problem. Because cache indexing is done based on universal tags, synonyms simply map
to the same location. When the cache is set associative, the synonyms can also not
coexist within a set because the synonyms have the same physical tag.

There are several methods to increase the cache size beyond the size of a page. The
first is already mentioned and is to increase the set associativity of the cache. Another
way, that requires OS support, is a technique called page coloring. The requirement for
this type of cache is that it is indexed by the part of the address which is the same for
physical and virtual addresses. This is normally limited to the page size. When the

2One way to still increase the size of the cache beyond the page size in VIPT system is to increase its
associativity. This is possible since increasing the associativity does not lead to more index bits.

30 CHAPTER 3. ARCHITECTURE

OS maps virtual pages to physical frames in such a way that the least significant bits
of the tag are always the same, the part that is allowed as cache index in increased.
The drawback of page coloring is that it limits the OS’s freedom to allocate memory
for pages, which can affect effective memory utilization. Page coloring is used in many
ARM processors. A detailed explanation can be found in [29].

3.5 Memory Hierarchy selection

In the previous section, four different cache hierarchies are presented. Excluding very
exotic solutions, these options should cover the design space for the ρ-VEX MMU. Table
3.1 summarizes the most important strengths and weaknesses of the proposed solutions.

Apart from having the highest complexity of all solutions, the multilevel configuration
has the least significant drawbacks. However, it does require two levels of cache to be
implemented. The current version of the ρ-VEX only has a single level and an additional
cache level would drastically increase the area of the design. Because the ρ-VEX is
currently only available as a softcore design, adding a second level cache would not allow
the system to be implemented on smaller Field-Programmable Gate Arrays (FPGAs).
Therefore this type of cache hierarchy is currently not a viable option.

The other three solutions all have one drawback that has the largest negative impact.
In case of the PIPT cache, this is the increase in pipeline length by two stages. For the
VIVT cache with a dual directory the increase in area utilization by the cache is the
largest drawback. The VIPT cache suffers from the limitation in cache size.

Taking this all in consideration, the VIPT cache is selected as best suited for the
ρ-VEX. As stated before the cache already occupies a large portion of the total area.
Choosing the VIVT solution increases this even further. Furthermore, the complexity
that VIVT caches introduce in multiprocessor systems are not well suited for the ρ-
VEX. The ρ-VEX is a embedded processor that also needs to be suited for lightweight
applications.

When discarding VIVT solutions entirely, the question remains whether to implement
a PIPT or VIPT cache. Both their weaknesses affect to processor throughput. The
increased pipeline required for the PIPT cache increases the branch penalty. As the
ρ-VEX currently does not include a dynamic branch prediction mechanism, this cost
can be significant. The VIPT solution potentially decreases throughput by increased
memory stalls due to cache misses. To quantify this effect, the ρ-VEX simulation system
is used to test several Powerstone benchmarks. These benchmarks are chosen because
they have been used extensively in previous publications relating to the ρ-VEX. The
results are shown in the graph depicted in Figure 3.13. For these programs only the
smallest cache sizes affect the execution times of some benchmarks.

Alleviating the cache size limitation
To alleviate the cache size limitation of the VIPT cache as much as possible, several steps
can be taken. Primarily the page size will be made parametric so that larger page sizes
can be selected for application which require larger cache sizes. Almost all computer
systems both historically and contemporary use a 4 kB page size. Some sources suggest

3.6. TLB MANAGEMENT 31

P0

16 k

P1

16 k

Bus Bus Bus

P2

16 k

P3

16 k

P0

2 x 16 k 2 x 16 k

P1 P0

4 x 16 k

Figure 3.12: This diagram illustrates how the cache blocks can be combined as sets
forming larger caches when pipelanes are combined.

that a larger page size has advantages in modern systems which have much more memory
available [30]. The additional advantages include less TLB misses since each TLB entry
spans a larger portion of the memory. The adverse effect of increasing the page size is
internal memory fragmentation in pages of which only a small part is used. In case of a
ρ-VEX core running on an ML605 development board with a Double Data Rate (DDR)
Random Access Memory (RAM) module, the amount of memory available is extensive.

Another way to increase the size of the cache in a VIPT system is to increase the
associativity of the cache. In Section 2.4.4, the ρ-VEX reconfigurable cache was briefly
explained. The cache consists of four blocks that can operate independently or that can
be merged to form larger caches. It is possible to coalesce these blocks as sets. Although
it is implemented differently in the current version of the ρ-VEX system, This would
combine in an efficient way with the choice for a VIPT cache. It would allow the size of
a single cache block to be as large as the page size while larger cores with four or eight
issue lanes would have caches double or four times the page size to their disposal. There
is work in progress in the Computer Engineering (CE) group relating to reconfigurable
set associative cache blocks for the ρ-VEX. This work has not been published yet so it
is not possible to refer to it at this time.

A third way which is already mentioned in Section 3.4.5 is page coloring. This
requires OS support and can negatively affect memory utilization. However, since the
ρ-VEX system running on an ML605 board does not have a shortage of memory, this
technique could be used if cache size becomes a bottleneck.

Finally, it is important to note that the limitation of the cache size is only an issue for
the data cache. In the ρ-VEX system is is not possible to write to the instruction cache.
Therefore, cache coherence is never an issue for the instruction cache. This relieves the
instruction cache of all size limitations.

3.6 TLB Management

For the ρ-VEX, the choice has been made to implement a hardware managed TLB. In
Section 2.5.4 systems were discussed that manage their TLBs in software. One notable
example is the ST200 processor that uses an ISA closely related to the one the ρ-VEX
uses. Managing the TLB in software does not avoid much area utilization and complexity
since the TW hardware is rather straightforward to implement. It does however greatly
increase the latency of a TLB miss because it will generate a trap and needs to execute

32 CHAPTER 3. ARCHITECTURE

Table 3.1: The advantages and drawbacks of the memory hierarchies discussed in this
chapter.

Type Pros Cons

PIPT - Cache design is unaffected - Increased pipeline length
- Simplest to implement

VIPT - Cache design is only slightly - Limits page size
affected

- Simple to implement

VIVT - TLB not in critical path - High complexity
dual directory - Increased cache area

- Cache invalidation on context switch and page
table changes

- Paired eviction

VIVT - TLB not in critical path - Highest complexity
multilevel - L2 cache shieds the L1 cache from - Requires at least two levels of cache

coherence traffic - Slightly increased increased cache area
- Cache invalidation on context switch and page

table changes
- Paired eviction (but less often)

Figure 3.13: Powerstone benchmark results for different cache sizes. The y-axis denotes
the data cache miss percentage.

possibly uncached ISR code. Apart from the cycles spent waiting for the main memory
when accessing the PT, a TLB miss serviced by a TW takes tens of cycles where a miss
in a software managed TLB can take hundreds of cycles and can be highly variable [31].
The main reason why many systems still implement a software managed TLB is that a

3.7. OPTIMIZATION OPPORTUNITIES 33

hardware TW module fixates the format of the PT and forces the OS to comply to this.
However, in the case of a softcore processor like the ρ-VEX, it is relatively easy to adapt
the behaviour of the TW module to other PT layouts.

3.7 Optimization Opportunities

In the ρ-VEX system, the MMU component is a single subsystem encapsulating every
TLB in the system. This is unusual because generally each core has its own MMU with
its own TLB(s) and a TW. See Figure 3.14 for a diagram of the memory hierarchy
of an Intel Core i7 processor. The fact that in the ρ-VEX system all the TLBs are
close together allows for some sharing of resources. For instance, all TLBs can share a
single TW unit. Since a table walk occupies the bus, it does not have any benefit to
instantiate multiple TW units since they cannot operate in parallel. Another interesting
opportunity is in maintaining TLB coherence. The TLB shoot-down scheme used by
many system, detailed in Section 2.5.6 is not needed in the ρ-VEX. Because the TLBs
are tightly coupled to each other, it is possible to broadcast TLB invalidations to every
TLB present in the system thereby updating them all at once. Issuing a flush command in
this way stalls all lanes until all TLBs completed the flush operation, making it an atomic
operation. This mechanism makes TLB coherence fast and completely transparent to the
programmer. The following lists summarizes the optimizations proposed in this section:

• Quick and transparent TLB coherence.

• Updating multiple instruction TLBs simultaneously.

• Sharing a single TW between all TLBs.

3.8 MMU Support for Dynamic Reconfiguration

The dynamic reconfigurability of the ρ-VEX is what makes this project interesting and
what takes it beyond simply implementing existing ideas on a new platform. This abil-
ity of the ρ-VEX system places some challenging requirements on several subsystems
including the MMU. On the other hand, it also provides opportunities for optimizations
which are not possible in more general processing platforms. These aspects of the MMU
that are unique for the ρ-VEX, can be divided into two categories: requirements and op-
timizations. Requirements are the necessary abilities the MMU must posses to support
the ρ-VEX in its dynamic reconfiguration ability. The optimizations are not essential
for the functioning of the MMU, but are desirable features. These optimizations allow
for efficient use of the instantiated resources and can increase the performance of the
address translation hardware.

Requirements
The primary ρ-VEX-specific requirement of the MMU is that it must be able to support
dynamic address translation for a single wide core or multiple smaller cores. Moreover
it must be able to switch between these functionalities at run-time.

34 CHAPTER 3. ARCHITECTURE

From the TLBs point of view, it does not matter how lanes are functionally coupled
inside the core. Fetch operations and data accesses are issued per lane and need to
be handled irregardless. The fact that different hardware context can run on different
lanes can be solved by including ASIDs in the TLBs entries. These allow the TLBs to
distinguish between different contexts address mappings. The responsibility of changing
these accordingly on context switches lies with the software.

The TW also needs to be aware of the current configuration to service TLB misses in a
correct way. When one of the TLBs asserts a miss, the TW needs the Page Table Pointer
(PTP) of the context currently running on the corresponding lane. this information is
required to search the correct PT for the requested address mapping.

Also dependent on the configuration is the amount of address translations which
must be performed per cycle. When the core is configured as a single large issue core,
only one data operation can be performed every cycle. In other configurations, however,
multiple data operations can be requested simultaneously. To accommodate for the most
demanding situation, where the amount of cores is the highest, the ρ-VEX MMU must
have as many data TLBs as the maximum number of cores. How to make use of every
data TLB in the system even when only one request is issued every cycle is considered
an optimization and will be discussed in Section 4.7.1.

Instruction fetches are also influenced by the configuration. In any configuration,
every lane generally fetches an instruction each cycle. But when the ρ-VEX is configured
as a single wide issue core, it would be possible to translate each instruction address with
a single TLB if instruction bundles are page aligned. When multiple cores are active
however, each cores instruction address is very likely to fall in a different page. Therefore,
the MMU also needs as many instruction TLBs as the maximum number of cores to avoid
the MMU becoming a bottleneck.

Optimizations
As described above, the reconfiguration ability of the ρ-VEX requires that both a data
and instruction TLB is present for each of the smallest supported lanegroups in the
system. While the instruction TLBs are referenced every cycle irrespectively of the con-
figuration, the addition of multiple data TLBs to the system can be considered wasteful
when they are not used in all configurations. The mechanism proposed to use these
resources in every configuration is to merge data TLBs together with the issue lanes.
When issue lanes are coupled together to form a wider core, the virtual tag of the data
request made in one of these lanes can be broadcasted to the data TLBs of all coupled
lanes. If any of the TLBs holds the corresponding physical tag, the data operation can be
executed immediately. This effectively increases the size of the cores data TLB together
with the issue width.

This proposed mechanism leads to another optimization which will be implemented
and evaluated. When multiple data TLBs are available to a wide issue core, this grants
the freedom to decide which of them is preferred to be updated on a miss. Consider a
situation in which a process is running on a wider core and it is known it will migrate
to a smaller core on the next reconfiguration. If the process is able to direct all its
TLB updates to a lane which it will be running on in the future, the process can ensure
that it will not need to repopulate its TLB after the the migration. This mechanism

3.8. MMU SUPPORT FOR DYNAMIC RECONFIGURATION 35

Figure 3.14: This diagram shows the memory hierarchy of the Intel Core i7 processor.
This diagram illustrates that multi-core processors generally have a separate MMU for
each core. This image is taken from [2].

can mitigate some of the latency costs of of migrating processes after a reconfiguration
is performed. This functionality is inspired by other work conducted in the CE group
where this mechanism is implemented in the ρ-VEX cache.
To summarize this section:

Requirements:

• The MMU should support all possible configurations.

• The MMU should be able to switch between these configurations during run-time.

Optimizations:

• Using the instantiated TLB units efficiently in all configurations.

• Supporting TLB update direction.

36 CHAPTER 3. ARCHITECTURE

3.9 Conclusion

In this chapter the high level design choices regarding the ρ-VEX MMU have been ex-
plained and substantiated. First an overview was given of the different memory hierar-
chies possible in a system with both virtual address support and caches. After weighing
the advantages and drawbacks of each of these architectures, the choice for a VIPT type
was cache explained. This type of cache avoid most of the complexities associated with
a VIVT cache, especially in a multicore system like the ρ-VEX. Additionally, because
address translation is not required before indexing the cache, the VIPT cache does not
increase the length of the pipeline like a PIPT cache does. The main drawback of a VIPT
cache is that its size is restricted by the page size. This can be extended by increasing the
set associativity of the cache. Other ways to circumvent this restriction are increasing
the page size and page coloring. In the last sections of this chapter the implications of
the ρ-VEX dynamic reconfigurable nature for the MMU were discussed. The challenge
lies in using the instantiated resources efficiently in all configurations. In the chapters
last section, a few additional optimizations were proposed. These are relatively easy
to implement and do not incur a high price complexity wise. These optimizations are
possible in the ρ-VEX because the TLBs are tightly coupled to each other.

Hardware Implementation 4
After having discussed the most important design choices of the ρ-VEX Memory Man-
agement Unit (MMU) on a conceptual level in Chapter 3, this chapter focusses on the
individual components of the MMU, their implementation in reconfigurable fabric, and
the interfaces there components have to each other and the rest of the ρ-VEX system.

This chapter starts by presenting the target implementation platform for this project
in Section 4.1. Section 4.2 discusses the interfaces the MMU has to the core and the
cache. The modifications to the cache which are required for interoperation with the
MMU are listed in Section 4.3. After these preliminary topics are discussed, the ac-
tual MMU hardware can be discussed. Section 4.4 describes the Translation Look-aside
Buffer (TLB) and its subcomponents. In Section 4.5, the Table Walker (TW) is ex-
plained. Section 4.6 discusses the MMUs design-time configuration features. Section 4.7
describes the mechanisms implemented in the MMU to support run-time reconfigura-
tion. In Section 4.8 the layout of the page table in memory is explained. This is not
fixed because it is dependent on the configuration of the MMU. Finally, in Section 4.9
and overview is given of the control registers which are added to the system to control,
and interface with the MMU.

4.1 Implementation Platform

The hardware platform used in this project is the ML605 evaluation board by Xilinx [32].
The board features a Virtex 6 Field-Programmable Gate Array (FPGA), specifically the
XC6VLX240T from their high performance Virtex series. Besides the FPGA the board
holds many peripheral components to extend its functionality. It features a wide range
of input and output interfaces and it can be programmed over Universal Synchronous
Bus (USB) without needing an external programmer. One feature that is useful for the
ρ-VEX system is the Double Data Rate (DDR) Random Access Memory (RAM) slot
which allows the ρ-VEX to access a large main memory.

The ρ-VEX core has been coupled to the Gaisler Research Library (GRLIB) plat-
form [11] by students who have worked on the ρ-VEX system in the past. GRLIB is
an open source Intellectual Property (IP) library designed for System-on-Chip (SOC)
development. The platform is centred around an AMBA bus originally designed by
ARM and contains a library of peripheral components. Figure 4.2 depicts an example
of a SOC build with GRLIB. In the diagram, the bus master is a LEON3 processor
which is also part of GRLIB. In our system, the ρ-VEX processor takes its place as
bus master. The peripheral components that are relevant for this thesis project are the
DDR RAM since it holds the (virtualized) memory and the Universal Asynchronous Re-
ceiver/Transmitter (UART) which is used for uploading programs and outputting results
and status information. GRLIB also features a timer unit and an interrupt controller.

37

38 CHAPTER 4. HARDWARE IMPLEMENTATION

Figure 4.1: The ML605 development board

Processor

AMBA AHB

Timers IrqCtrl

AMBA APB

8/32-bits memory bus

USBLEON3
Serial

Dbg Link

AHB
Controller

Memory
Controller

AHB/APB
Bridge

I/O portUART

32-bit I/O port

JTAG
Dbg Link

RS232 JTAG

RS232

Spacewire
Link

LVDS

PCI

PCI

WDOG

Ethernet
MAC

PHY

PS/2VGA

Video PS/2 IF

LEON3 Template Design

DAC

CAN 2.0
Link

CAN

SRAM SDRAMPROM I/O

USB PHY

Figure 4.2: An example of a SOC based on the GRLIB platform.

These components will be used to supply the verification software, described in Chapter
5, with a periodical timer interrupt used for task switching.

4.2 Interface to the Processor and Cache

A simplified diagram of the MMU’s components and the most important internal and
interfacing signals is shown in Figure 4.3. In the diagram only one memory pipeline is
shown. In the ρ-VEX processor the path from the core, through the TLB, to the cache
is duplicated for every pipeline. The TW is not duplicated because servicing TLB misses

4.2. INTERFACE TO THE PROCESSOR AND CACHE 39

Figure 4.3: This diagram shows where the MMU is situated in the memory hierarchy.
Also shown are the most important internal and interface signals.

requires memory access and thus must be serialized anyway. In Chapter 3, a overview of
different memory hierarchies was given and the best place to insert the TLB was selected.
Optimizing for speed and simplicity, the TLB will be located alongside the cache so that
the cache lookup and page tag translation can be done simultaneously. This turns the
cache into a Virtually Indexed Physically Tagged (VIPT) cache.

Stall Signals
Besides receiving and supplying tags from and to the ρ-VEX pipelines and cache respec-
tively, the MMU also receives and asserts various stall signals top and from the core
and the cache. These signals are used to synchronize the operations of the core and
the memory subsystems, the MMU and the cache. When either the cache or the TLB
misses, the ρ-VEX pipeline that issued the memory request and all coupled lanes must
be stalled until the miss is serviced. When the TLB services a miss, the MMU must also
stall the cache. This is necessary because the cache cannot perform a tag comparison
when the TLB is not able to supply the correct physical tag.

Memory Interface
To update the TLB when a miss occurs, the TW must access the Page Table (PT)
located in main memory. To do so, the MMU requires an interface to the AHB bus. The
MMU uses the same type of AHB bus bridge as the cache. This means that a ρ-VEX
system, which includes the MMU, has an extra bus interface compared to the baseline

40 CHAPTER 4. HARDWARE IMPLEMENTATION

ρ-VEX implementation.

Register Interface
Configuring the MMU is done through a memory-mapped register interface. It can be
used to enable the MMU and to inform it of the current configuration of the ρ-VEX
core. This is necessary because the MMU needs to know which contexts are running on
which issue lanes. The process-specific parameters, the Page Table Pointer (PTP) and
Address Space Identifier (ASID) are also supplied through this interface. These can be
changed upon a process switch to let the MMU translate addresses issued by the lanes
into another address space. Flush requests are also be submitted through the MMU
control registers. A detailed overview of the MMU specific (context) control registers,
including a description of the flushing interface, can be found in Section 4.9.

Memory Transaction Model
The memory transaction model of the ρ-VEX system that includes the MMU is an
extension of the baseline version, which includes the cache. This section will detail the
interface between the core and the cache, which partly runs through the MMU. The
interface between the cache and the AHB bus falls outside the scope of this project. In
the old situation, memory reads for both instruction and data were implemented as two
cycle transactions that could be stretched by the cache. Memory writes always took a
single cycle because the cache has a write buffer. In the first cycle the address and control
signals are asserted in combination with the data in case of a write. In case of a read,
the data is returned in the second cycle. The second cycle of a memory transaction is
overlapped with the first cycle of the following. Each transaction can be stretched by the
cache when it is not able to return the data, which happens when the cache encounters
a miss. To do so, the cache has a stall signal it can assert. This halts the core until the
data becomes available.

In the new system the MMU can also encounter a miss, which requires a similar
stretching mechanism. When a TLB encounters a miss, both the core and the cache are
stalled until the miss is resolved. Note that in the new situation, stalls can also happen
in case of memory writes. When the TLB hits, the latency of the TLB is hidden and
no extra cycles are needed.1TLB misses either results in a successful table walk, after
which the TW can update the TLB, or alternatively, in a pagefault. When a pagefault
is generated, the MMUs stall signal to the core is de-asserted so the core can register the
trap.

4.3. CACHE MODIFICATIONS 41

In Figure 4.4 a timing diagram is drawn which shows these different situation in
more detail. The diagram shows a sequence of six instruction fetches, which illustrate
the different situation that can occur. The following list refers to the instruction fetches,
which are similarly named in the diagram:

A) A normal instruction fetch without any stalls.

B) TLB miss with a successful table walk.

C) A cache miss.

D) An instruction page fault.

E) An instruction fetch cancelled by the trap generated by the previous fetch.

F) The first instruction of the trap handler.

In the diagram all core signal are coloured black, the internal MMU signals and
signals from the MMU to the core and cache are colored blue, the signals from the
cache are coloured red. Both the core and the MMU keep their requests valid when a
component downstream in the memory hierarchy asserts its stall signal. Note that the
rv2mmu Ptag and rv2cache index operate in lock-step. This is because these are simply
different slices of the address issued by the core. While the diagram shows the data path
for instruction fetches, the mechanisms are the same for data reads and writes.

4.3 Cache Modifications

The general operation of the cache is not changed by the addition of the MMU. There
are however some adaptations needed to make the cache function in conjunction with the
MMU. These changes are mostly because some of the signals that originally ran directly
from the core to the cache, are now routed through the MMU. This applies foremost to
the address tag which needs to be translated by the MMU. In the design without the
MMU, the tag is simply delayed by one cycle inside the cache while the index is used to
perform the cache lookup. This is required because the tag comparison can only be done
after the lookup is performed, which takes one clock cycle. In the new design, the tag
must be translated, which in the general case of a TLB hit, also takes one clock cycle .
Because of this, the cache does not longer need to delay the tag, but can directly use it
the cycle in which it is output by the MMU.

Another new scenario is when the MMU fails to translate the tag in single cycle
because of a TLB miss. This leads to either a table walk or a pagefault. In either case
the cache must be made aware that it must wait until the tag becomes available. To
support this, the stall mechanism is expanded to include a stall signal from the TLBs to
the cache.

1see the discussion in about virtual memory hirchies and the benefits of a VIPT cache in Section 3.4

42 CHAPTER 4. HARDWARE IMPLEMENTATION

clock

rv2mmu enable

rv2mmu fetch

rv2mmu Ptag A B C D E F

mmu2rv stall

mmu2cache stall

tlb2tw miss

mmu2rv pageFault

mmu2cache Vtag A B C

rv2cache index A B C D E F

cache2rv stall

cache2rv instruction A B C

Figure 4.4: Timing diagram of the instruction fetch interface of the ρ-VEX.

4.4 Translation Look-aside Buffer

The TLB is the most important component in the the MMU. This is because it lies in
the critical path for instruction fetches and data reads and writes. Other components
like the TW are only involved in a small fraction of memory accesses. Because of this,
TLB latency is an important metric. As explained in Section 3.1, TLBs are usually
implemented in the form of Content Addressable Memory (CAM), sometimes referred
to as fully associative memory. This enables single cycle lookups. Because the TLB is in
the memory path of the processor, every extra cycle needed to perform a TLB lookup also
requires an increases of the Central Processing Unit (CPU)’s pipeline length. Besides
speed considerations, the TLB is also the most the most complex component of the
MMU. Figure 4.5 shows a schematic diagram of the different components that compose
the TLB.

CAMs are expensive components in terms of hardware resources on any implemen-
tation platform. This holds true for Application-Specific Integrated Circuit (ASIC) de-
signs, but even more so for FPGAs. The reason is that the FPGAs resources are not well
suited to implement this type of memory. Because the CAM is the heart of the TLB,
this component will be discussed first.

4.4. TRANSLATION LOOK-ASIDE BUFFER 43

CAM

(Synchronous)

One-hot to

Binary

Victim

Generator

P. Tag RAM

(Asynchronous)

V. Tag RAM

(Asynchronous)

Valid RAM

(Asynchronous)data_in binary

address

one_hot

address

0

1

0

0

1

1

Mux 1 Mux 2

Mux 3

P. Tag

Hit

V. Tag

mod_addr_in

==

Figure 4.5: Simplified connection diagram of the TLB.

4.4.1 Context Accessible Memory

A CAM, sometimes referred to as fully associative memory, is a type of computer memory
that is used in high speed applications. It differs in the way it operates compared to
regular memories such as RAM. Where normal memories receive an address and return
the data stored in that particular location, CAMs are supplied with a search key and
subsequently search the entire memory for any matches. The memory then returns either
the address of the (first) match or some word of data associated with the search key.

In an FPGA, there are three ways to implement a CAM [33]. They can be im-
plemented using Lookup Table (LUT)s, registers, and BRAMs. The LUT approach is
limited in the sense that the entries can only be changed by programming the FPGA
and so it is read-only during run-time. This is not suitable for a TLB because it must
be both readable and writeable. The register approach is basically an array of registers
each with a comparator circuit. This can be a straightforward and fast implementation
for small CAMs with narrow entries. For larger memories however this quickly becomes
quite expensive as the resources scale more or less linearly with the entries width and the

Data In [0..9] Address Out [0..31]

Address Out [32..63]

Data In [10..19]

Block RAM

1024 deep

x 32 wide

Block RAM

1024 deep

x 32 wide

Figure 4.6: This diagram shows how deeper and wider CAMs are build from multiple
smaller CAMs implemented in BRAMs.

44 CHAPTER 4. HARDWARE IMPLEMENTATION

memories depth. RAM based CAMs scale to the size of the memory in a similar fashion
but mostly use up BRAM resources and are capable of supporting much larger memories
operating at speeds similar to the register based approach. Because most FPGAs have
an abundance of BRAMs and they are not heavily used in the ρ-VEX, the decision was
made to use the latter approach. This also enables more freedom to parametrize the
depth of the TLB which is a useful feature in a reconfigurable processor. It is also useful
in the scope of this project to measure the effect the TLB depth has on the ρ-VEX
performance.

The BRAM blocks available in the FPGA are fundamentally different from how
hardware CAMs would be implemented. Luckily there are ways to still use them to
implement fully associative memories. Xilinx provides an application note [34] detailing
how to do this. Most of the ideas used in the ρ-VEX TLBs CAM come from this
document. Where a normal RAM receives an address and returns the word of data
stored at that location, a CAM works the other way around and receives a word of data
and subsequently returns the address of the location containing the data. A RAM can be
used in such a way by using the data word as an address and effectively creating a unique
location for every possible search key. This memory location can then be filled with the
address or data associated with the key, or a pointer to a secondary memory holding
these. The problem when implementing this naively is that the size of the RAM grows
exponentially with the input data’s width. When supplying the CAM with 20 bits wide
virtual tags to find the corresponding physical tag (also 20 bits wide), this amounts to a
memory with two million 20 bit entries, which is the equivalent of 72 32 KiB BRAMs.

To implement a CAM that scales better with the memory’s width and depth, the
CAM is not implemented as one large contiguous memory, but by connecting multiple
smaller ones in a smart way. The building blocks are single BRAM blocks configured
as 1024 32-bit memories. This can be used as a CAM with 10-bit wide search key and
32-bit output addresses. The entries in the CAM are one-hot encoded, where each bit
represents a location in a secondary memory holding the associated data.

To support deeper CAMs, with more than 32 entries, the BRAM can be duplicated
with each block receiving the same input but storing one-hot encodings for another 32
entries. The outputs of the BRAMs can be concatenated to form a large one-hot vector.

To increase the CAMs width, the search key is cut into slices of 10 bits wide. Each
slice is then routed to one of the BRAM, which effectively matches the slice of the
input data to the same slice of the CAMs entries. To check if the entire input data
matches any of the CAMs entries, the one-hot encoded output vectors of the different
BRAMs are AND-ed. If all slices of the input data match for a single entry in the one-hot
encoded vector, there will be a ’1’ in the corresponding location after the AND operation.
Figure 4.6 shows a CAM which can hold 64 20-bit entries. It is a single BRAM, duplicated
once to double the depth, and once to double the width. This composite CAM thus uses
four BRAM resources.

4.4.2 TLB States

The TLB has multiple modes of operation. In Figure 4.7 a simplified state diagram of
these different modes is depicted. The state of the TLB determines how the muxes in

4.4. TRANSLATION LOOK-ASIDE BUFFER 45

Mark as
Dirty

Read

Add
to CAM

Remove
from CAM

Flush

update
tlb

write to
clean page

ack from TW

�ush

clean up

Figure 4.7: Simplified state diagram of the TLB.

Figure 4.5 are configured. This dictates how data flows between the different components
and the inputs and outputs of the TLB. In this section the TLBs modes of operation
are explained.

TLB Reads
Read mode is the default state of the TLB. In this mode the TLB receives virtual tags

and outputs physical ones. It stays in this mode as long as the TLB holds the requested
translations. Translating the tag of an address takes a single cycle. As explained in
Section 3.4.5, this happens in parallel with the cache lookup which uses the index part
of the address. The states of the muxes as depicted in Figure 4.5 are all set to ‘0’. The
state of the third mux is actually not relevant in this mode because it is only used for
updating the contents of the CAM, which is not needed in read mode.

The data path of the TLB in this mode is as follows. The virtual tag is concatenated
with the current ASID and they are supplied to the CAM. The CAM then searches its
entries and outputs the address it found at the location of the match. The address is
one-hot encoded as explained in Section 4.4.1. After the address is translated to binary
format by the one-hot to binary converter, the address is used to index three RAM
memories also present in the TLB. These RAMs support asynchronous reads so a read
operation of the TLB of a whole takes a single cycle. One of these holds the physical tag
which is output in case of a hit. The other two are used to check if the translation found
is actually valid. The corresponding bit in the valid ram must be set for the translation to
be valid. When the Operating System (OS) needs to invalidate TLB entries it can clear
bits in this RAM to do so. Because the contents of the CAM memory are not always
known, for example when the ρ-VEX has been reset, it is possible for false positive
hits to occur. Therefore the third RAM is used to check if the CAMs match actually
corresponds to the virtual tag and ASID that where used to initiate the read. If these
also match, the hit signal is asserted signalling a correct address translation. When a
false positive is discovered, a clean up action is required to clear the RAM of the stale
entry. This mechanism is further explained in Section 4.4.3.

46 CHAPTER 4. HARDWARE IMPLEMENTATION

As long as the TLB hits, its operation is continuous, only delaying tags by one cycle.
When a miss occurs however, the TLB moves to another state and it is not able to
service reads. When this happens, the stall signal to the processor is asserted, stalling
the pipeline until the TLB is updated. This is also the case when the TLB services a flush
request. It is also possible that no address translation is required for memory accesses.
This can happen when the processor operates in real mode as opposed to virtual. This
happens on boot-up, when the initializations required for virtual address spaces is not
completed yet. Some systems also use real addresses when operating in kernel mode,
bypassing the MMU. Bypassing the TLB can also be useful when writing to memory
mapped devices such as an UART.

TLB Updates
When a TLB miss occurs the address translation cannot be completed. The contents
of the TLBs memory must be updated to enable further execution. All writes to the
TLB are initiated by the TW. When a new entry is added to the TLB, this sometimes
requires that an old one must be removed. The victim generator component tries to
select an empty or invalid entry and otherwise randomly replaces a valid entry. The
victim generator supplies the address of the victim in one-hot encoding. Muxes 1 and
2 in Figure 4.5 are set to ‘1’ the mux 3 is set to ‘0’. When the mux 2 is set to ‘1’, the
victims physical tag is output from the RAM. This tag is looped back to the CAM and is
used to remove the victim address from the entries corresponding to the victim physical
tag. This is a read-modify-write operation. After the victim address is removed from
the CAMs entries that belong to the victim, the same address can then be added to the
entries belonging to the replacement. To do so, the mux 1 is set back to the ‘0’ position.
This directs the updated address to the replacements entries. This operation is also a
read-write-modify operation. In total this brings the amount of cycles needed to write a
new entry to the TLB to four cycles.

TLB Flushes
Whenever the OS makes changes to the PT, all the TLBs present in the system must be
updated too. If this would not happen, the outdated information in the TLB could lead
to invalid memory accesses. The mechanism used is to simply invalidate all TLB entries
affected by the change(s) to the TLB. The TW can then repopulate the TLB with the
updated entries whenever a TLB miss occurs. As can be seen in the TLB state diagram
depicted in figure 4.7, flushing the TLB halts all other activities such as reading for as
long as the flushing process takes. Flushing the TLB can be done in a number of ways.
The most straightforward one, which is also the quickest way, is to flush all the entries
at once. This is done by writing zeros to all entries of the valid RAM depicted in figurer
4.5. This RAM is implemented using LUT resources, which makes it possible to clear all
entries in a single cycle. The CAM is updated through the deferred cleaning mechanism
explained earlier. While this method is the fastest in the short term, often it is rewarding
to be as conservative as possible with invalidating entries, since it generally leads to more
misses. To facilitate this, the TLB can also be flushed in a more fine grained fashion, in
which every entry is compared to parameters supplied through the register interface. For
instance, all entries which have a specific ASID can be flushed, effectively removing all

4.4. TRANSLATION LOOK-ASIDE BUFFER 47

translations belonging to a single process from the TLB. Alternatively, all translations in
a range of address tags can be flushed. These mechanisms can also be combined. When
instructing the TLB to flush in this way, the process takes longer than when the entire
TLB is flushed. This is because all entries must be compared to the supplied parameters
one by one. Therefore, the amount of cycles needed has a linear relation to the TLBs
depth. The exact modes and parameters available for flushing the TLB are described in
section 4.9.

4.4.3 Stale CAM Entries

Sometimes the CAM can become polluted with garbage entries. When the ρ-VEX system
powers up, the contents of the CAM are clean. When the system is reset however, all the
old entries are still present. Another situation which leaves stale data inside the CAM
is when a TLB entry is invalidated. This is done by clearing the valid bit in the valid
RAM in the TLB, leaving the data still in the CAM. These situations can easily lead to
false positive hits.

When the a false positive is identified, the TLB must remove the false (one-hot)
address from the entries in the CAM corresponding to the search key. To do so the third
mux in Figure 4.5 is set to ‘1’. The logic surrounding the CAM (not depicted) is then
instructed to remove the address bit from the one-hot vector. This is a read-modify-write
operation and thus takes two cycles. This mechanism of deferred cleaning of the CAM
is useful because stale entries only need to be removed when they cause trouble, which
saves cycles. This mechanism also enables single cycle TLB flushes.

4.4.4 Large and Global Pages

Most MMUs support large and global pages. Large pages are used to allocate portions of
memory which are larger than a single page. This allows a single mapping to be stored
in the TLB thereby saving precious space. Global pages are virtual to physical mappings
that are valid for every process. Global mappings are usually never chosen as victim by
the TLBs replacement policy.

In Section 4.4.1 it is explained that the CAM memory in the TLB is created by using
multiple BRAMs that act as a CAM for a specific slice of the input. The output of each
CAM is a one-hot encoded address vector. These vectors are then AND-ed to form the
address returned by the CAM as a whole.

This approach facilitates implementing tag matching for large and global pages. Re-
call from Section 2.5.2 that PT lookups are performed in multiple steps. In each level, a
part of the address tag is used as an index in a table. The entry in the table points to
the next level or in the last level, holds the physical tag. These tag slices are referred to
as a level one (L1) or level two (L2) tag.

For normal pages the virtual address needs to match both the ASID and the entire
tag of one of the entries in the TLB. For large pages however, only the L1 tag needs to
be matched. The L2 tag is treated as don’t care. Similarly, for global pages, the ASID
should be ignore when matching.

48 CHAPTER 4. HARDWARE IMPLEMENTATION

It is not possible to implement a ternary 2 CAM using BRAMs [34]. To still support
large and global pages, a method was designed in which entire CAM blocks are ignored.
See Figure 4.8 for a diagram that depicts this method. The input to the CAM is divided
into three parts. The ASID, the L1 tag, and the L2 tag. Each slice is connected to a
different CAM block. By selectively combining the results of the individual CAM blocks
it is possible to ignore parts of the input to the CAM.

This can easily lead to false positive matches for large and global pages. To filter
these out, the outputs of the CAM are masked by vectors that indicate which entries
of the TLB actually hold large and global pages. A hit in the TLB occurs if any of the
masked outputs of the CAM are non-zero. It is also possible that multiple outputs are
non-zero. The following priority order is implemented:

1. Large page

2. Regular page

3. Large global page

4. Global page

Non-global pages overrule global ones. This is implemented because they are more
specific than global pages. It allows specifying a global page in general and overruling
this for a specific process. Mappings for large pages should not occur in parallel with
mappings for pages that fall within the large page. This is the responsibility of the OS.
When a L1 PT entry is flagged as being a large page, this actually makes all pages that
fall within this page inaccessible in the PT. Since the pointer to the L2 PT is replaced
with the mapping of the large page. To still be able to function when the OS ignored
this rule, the large page was chosen to have priority.

The CAM blocks are sized such that each can match a 10-bit wide input slice. When
a larger slice must be matched, the CAM must be constructed from multiple BRAM
blocks. This imposes limits on the size of the ASID and L1 an L2 tags for a minimal
implementation area-wise. A minimal TLB implementation uses three BRAMs resources
and can be instantiated if the following conditions are met:

• ASID width <= 10

• large pagesize >= 4 MiB

• large page size
page size <= 1024

These rules enforce that the ASID, L1 tag, and L2 tag fields are not larger than 10 bit
wide. They follow from the rules for the sizes of the L1 and L2 tags which will be
discussed in Section 4.8.

2A ternary CAM which enables specifying bits as don’t care. These bits are ignored during matching.

4.4. TRANSLATION LOOK-ASIDE BUFFER 49

Large Pages Mask

Global Pages Mask

L1 tagASID

Virtual Address

L2 tag O�set

TLB_CAM
TLB

regular
page hit

large
page hit

global
page hit

large
global

page hit

CAM CAM CAM

Figure 4.8: This diagram shows how the TLB matches global and large pages by treating
parts of the input as don’t care.

4.4.5 TLB Coherence

In a multiprocessor system supporting virtual address spaces, it is important that each
processor operates on the same mappings. For the PTs this issue is trivial since each
process operates on a single PT and the coherency problem does not exist. In the case
of TLBs, this does become an issue since multiple TLBs in the system can hold the same
mappings. Therefore, it is necessary that TLB invalidations are executed in all TLBs in
an atomic way.

In Section 3.6, it was already mentioned that the ρ-VEX MMU handles TLB co-
herence in a way that is transparent to the programmer. This feature is achieved by
broadcasting a TLB flush request from one context to every TLB in the system. The
MMU then stalls the core and the cache until each TLB signals it is done flushing. It
may also occur that multiple contexts, running simultaneously, issue flush requests in
the same cycle. This situation is handled by serializing the requests. Since each flush

50 CHAPTER 4. HARDWARE IMPLEMENTATION

stalls the entire system until it is complete, and serialized flush request are handled
immediately after each other, these simultaneous request are handled in a single cycle
from the cores point of view. Stalling the core until all flush requests are handled also
ensures the flush parameters of each request are kept stable until it is serviced. The
flush parameters can only be changed by writing to the MMUs control registers, which
cannot happen as long as the core is stalled.

4.5 Table Walk Hardware

The TW is a rather straightforward component. It consists of a state machine and
an interface to the main memory. When one of the TLBs does not hold a translation
requested by the corresponding issue lane it asserts its miss signal. The TW then uses
the virtual tag issued by the corresponding lane to traverse the PT. The pointer to the
base of the PT is supplied by the control register interface of the context active on that
lane. This process is similar for both instruction and data TLB misses. When the TW
finds the address mapping the TLB needs, it updates the TLB and the core can continue.
When the PT does not hold a mapping for the virtual tag, a page fault occurred and
the OS must load the frame from memory and update the PT. To signal a page fault, a
trap signal is asserted by the TW. Because trapping the core automatically disables the
MMU, the OS can run its Interrupt Service Routine (ISR) in physical address space.

Searching the PT for mappings requested by the TLBs can be performed using only
read operations. There are however some bit flags accompanying mappings in the PT
that can be maintained dynamically in hardware which require the TW to write to the
PT as well. These bits are the accessed and dirty bits. For the function of these bits,
refer to Table 4.1.

Accessed bits can easily be updated every time the TW retrieves a mapping from the
PT. When the mapping has its accessed bit cleared, the TW performs a read-modify-
write operation to set the bit in the PT. Dirty bits are somewhat more difficult and
require cooperation between the TLBs and TW. These bits are also maintained in the
TLB. When a write operation passes the TLB on a page that has its dirty bit cleared,
the TLB signals the TW that it needs to set the corresponding dirty bit in the PT.
Additionally the TLB sets the dirty bit in its own memory to ensure this procedure only
needs to be performed once. In Figure 4.9 the TWs state diagram is drawn.

4.6 Design-time Configurability

The ρ-VEX system is designed to be tailored to specific applications to maximize effi-
ciency in terms of area and performance. Refer to Section 2.4 for an overview of the
parameters that can already be modified in the baseline implementation. The MMU has
been designed to be parametric in the following ways:

• MMU enable

• Page size

• Large page size

4.6. DESIGN-TIME CONFIGURABILITY 51

mem_read_req

mem_read_ack

mem_write

address_calc

idle

instruction miss,
data miss, or
mark dirty

PT level = 1
and
not large page

PT level = 2
or large page
->
return PTE or
generate pagefault

PT level = 2 and
(mark dirty or accessed)
->
return PTE

Figure 4.9: Simplified state diagram of the TW.

• TLB depth

• ASID width

The addition of the MMU is entirely optional. When the MMU enable flag is disabled,
the system has the same functionality as the baseline implementation and the MMU is
not instantiated. The signals which are routed through the MMU will be routed directly
between the core and cache. The cache is also dependent on this enable flag since it has
slightly different behaviour when the MMU is not present. In Section 4.3 an overview
was given of these differences.

The size of pages and large pages size can also be specified. This is useful because
some applications can benefit from a larger page size since this potentially decreases
TLB misses. Another advantage is that increasing the page size allows for a larger data
cache. This relation is due to the VIPT cache and was explained in section 3.5. The
MMU implementation only allows one size for large pages but the size can be specified.

Parameters that relate to the TLB are the number of entries each TLB holds and
the number of bits available for the ASID. Increasing the TLB depth can decrease
TLB misses simply because it can hold more entries at once. The width of the ASID
determines how many active processes can be supported without having to reassign an
ASID. When this happens it is necessary to flush all TLB entries associated with the

52 CHAPTER 4. HARDWARE IMPLEMENTATION

ASID which is reassigned. Deeper TLBs and wider ASIDs are more demanding for the
TLBs CAMs resulting in higher resource usage. In its minimal configuration, the TLB
uses three BRAMs and supports up to 32 entries and ASIDs not wider than ten bits.

4.7 Run-time Reconfigurability

Besides having many static configuration parameters, the novelty of the ρ-VEX processor
is its ability to be reconfigured dynamically during runtime. This feature was discussed
earlier in Section 2.4.3. Later in Section 3.8 the implications this feature has for the
MMU were discussed. In this section the actual implementation of those features will be
detailed.

4.7.1 Coalescing data TLBs

Depending on the configuration of the ρ-VEX as one wide Very Long Instruction Word
(VLIW) processor or multiple smaller ones, the issue lanes operate independently or in
lock-step with each other. The system that governs this mechanism uses a decouple bit
for every lane, which indicates whether the lane runs autonomously or is coupled to its
neighbour. This system is already present in the baseline implementation of the ρ-VEX,
which is the starting point of this thesis. The reason for this is that the dynamically
reconfigurable nature of the ρ-VEX system places similar requirements on the cache as
on the MMU. Moreover, the concept of coalescing data TLBs is taken from the design
of the cache where the same mechanism is used to distribute data to, and read from, the
cache blocks of all coupled lanes.

The ρ-VEX architecture dictates that only one data access is permitted each cycle for
each individual core. When one lanegroup in a group of coupled lanegroups issues a data
memory access, all associated data TLBs are searched for the address mapping. This is
accomplished by a routing network governed by the decouple bits mentioned earlier. In
Figure 4.10, a schematic is drawn which depicts this network for a ρ-VEX processor with
4 lanegroups. The depth of the routing network scales logarithmically with the width of
the core. The input routing network delivers the data request signals which consist of
the virtual tag and read or write enable signals to each TLB. A second output routing
network collects the results of all the TLBs. When any of the TLBs holds the requested
memory mapping, the core can continue without interruption. If all the TLBs miss, one
of them must be updated with the missing address mapping.

Lanes are always coupled to their higher indexed neighbour. Groups of coupled lanes
must always be powers of two and must be contiguous. Furthermore they must be aligned
by the width of the coupled cluster. These and other rules are defined in the ρ-VEX
user manual [35].

4.7.2 TLB update direction

The previous section described how wider cores have multiple data TLBs to their dis-
posal. One question that rises is which TLB to update whenever a miss occurs. In the
normal situation a round-robin scheme is used to select which TLB is updated. This

4.7. RUN-TIME RECONFIGURABILITY 53

issue lane 0

issue lane 1

issue lane 2

issue lane 3

cache block 0

cache block 1

cache block 2

cache block 3

TLB 0

TLB 1

TLB 2

TLB 3

core input routing network TLBs cache

0

2

1

1

output routing network

0

2

1

1

decouple = 1

decouple = 0 or

Figure 4.10: The network that routes virtual tags to each TLB in a group of coupled
lanes. A similar network is used to route the associated physical tag back to the lane
that issued the read or write operation.

issue lane 0

issue lane 1

issue lane 2

issue lane 3

cache block 0

cache block 1

cache block 2

cache block 3

miss

miss

miss

HIT

core input routing network TLBs cacheoutput routing network

Figure 4.11: This diagram gives an example of how requests for data address mappings
are distributed over a group of coupled lanes. In this example, lane 1 issues a data read
or write. The virtual tag is routed to all TLBs by the input routing network. How it
is routed is based on the read and write enable signals, which can only be asserted by
one of the coupled lanes. TLB 3 turns out to hold the requested physical tag. The tag
is then distributed to all coupled cache block by the output routing network.

policy is chosen to distribute mappings evenly over the TLBs. It is also possible to
specify manually which TLB is preferred to be updated through a the MMUs register
interface. This mechanism was discussed earlier in Section 3.8. Directing mappings to
a specific issue lane can be useful in a situation where a reconfiguration is immanent.
Sometimes it is known that in the near future the current application will be run on a
subset of the lanes it is currently running on. If all TLB updates are directed to those
lanes, this will avoid any unnecessary TLB misses. The specific implementation of the
interface to this mechanism is described in Section 4.9. An evaluation of the benefits of

54 CHAPTER 4. HARDWARE IMPLEMENTATION

this feature will be conducted in Section 6.3.3.

4.8 Page Table Organization

In Section 2.5, it was explained why it is not efficient to implement the PT as one large
contiguous structure. Instead, the page table is implemented in several levels. While
breaking up the PT drastically lowers the memory footprint, each level also adds an extra
level of indirection. Virtually all systems which use 32-bit addresses use a two level PT.
This is also holds for the ρ-VEX in most configurations. However in the ρ-VEX the sizes
of both a regular and large page are determined by parameters. This also influences
the sizes of the first and second level page tables. This means that whatever OS is
running on the ρ-VEX needs to take these parameters in consideration when traversing
or modifying the PT. To facilitate this, a global register is added in which the page sizes
of the current configuration can be read out. The L1 and L2 page tables are sized in the
following ways 3:

• L1 table size = (232 − large page size) · 4

• L2 table size = (large page size− page size) · 4

The sizing of (large) pages is left up to the designer as much as possible, however
some limitations do exist. The following restrictions are imposed on the sizes of regular
and large pages:

• 4 KiB <= page size <= 1 MiB

• 4 KiB <= large page size <= 1 GiB

• large page size >= page size

The lower threshold on the page size is imposed by the cache. The upper limit is
chosen because the range from 4 KiB to 1 MiB can be specified with a single byte in the
control register. Since the upper limit of 1 MiB is a ridiculously high value for a page
size, this limitation is acceptable. The lower limit of the size of a large page is the same
as a regular page. Sizing a large page smaller than a page would not make sense and is
prohibited. When they are set to the same size, large pages are effectively disabled. The
maximum size of a large page is 1 GiB.

This freedom of sizing the pages forces the designer to think about the layout of the
page table. All configurations are supported by the hardware but some make more sense
than others. It is for instance possible to define the page size at 4 KiB and the large page
size at 8 KiB. This then would lead to L2 page tables of just 2 entries. In this case it
would be better to set them to the same size, removing a level of indirection of the PT.
The ranges of the sizes of the L1 and L2 tags and the offset can be found in Figure 4.12.

3The last term is the width of a Page Table Entry (PTE) in bytes.

4.9. REGISTER INTERFACE 55

L1 Tag

2 - 20 bits

L2 Tag

0 - 18 bits

O!set

12 - 20 bits

Figure 4.12: The division of addresses into L1 and L2 tags and the page offset is based
on the sizes of regular and large pages.

Flags

0 = Present

1 = Large Page

2 = Writable

3 = Kernel Page

4 = Global

5 = Cachable

6 = Dirty

7 = Accessed

L1 Entry L2 Pointer

FlagsL1 Entry Large Page Tag

FlagsL2 Entry Page Tag

PWKGCDA LPL

8 bits

2 bits30 bits

max 24 bits

Figure 4.13: Page table entries for the first and second level of the PT.

4.8.1 Page Table Entries

PTEs are different for first and second level tables. In a second level table the entries
always hold set of bit flags and a physical tag if the entry is valid. In a first level table,
the entry either holds a pointer to a second level table or a physical tag for a large page.
The distinction between these two is made based on whether the large page flag is set.
The layout of the different PT entries is depicted in Figure 4.13. A listing of the different
bit flags is given in Table 4.1.

4.9 Register Interface

The configuration of the ρ-VEX MMU can be changed through a memory mapped regis-
ter interface. Additionally, the register interface is used to supply the MMU with process
specific parameters which are required to map processes to the correct address space.
These parameters are the PTP and the ASID. Finally, this interface also provides a fine
grained flushing interface for the TLBs. An schematic diagram of all the control regis-
ters and their fields is depicted in Figure 4.14. In the rest of this section, each control
register’s functionality will be explained, grouped by functionality.

Page size register (MMUC)
This read-only register holds the sizes of regular and large pages. It can be read by an
OS to determine which page sizes the MMU is configured to implement, so it can adjust
accordingly. For the OS it is important to know these parameters because it dictates
the layout of the page table and is required information for memory allocation. These
registers allow the OS to handle these sizes as parameters which allows the OS to run
on differently configured platforms without needing to be recompiled. This is the only

56 CHAPTER 4. HARDWARE IMPLEMENTATION

Table 4.1: Overview of the bit flags which are maintained in the page table.

Index Name Description

0 Present Indicates whether the PT entry is valid and the correspond-
ing page or L2 table is present.

1 Writable If this bit is ’0’, the page is marked as read only. Writing to
this page generates a trap.

2 Protection Level This bit is set for kernel pages. When access is performed
without elevated access rights a trap is generated.

3 Global Global pages and their virtual to physical mapping are valid
for every process (ASID is ignored). These entries are never
replaced by the TLB.

4 Cachable Read and writes to this page bypass the cache.

5 Dirty This bit is set by the TW when a write is performed to the
page. The OS checks this bit when a page is swapped out
to see if its contents are changed need to be written back.

6 Accessed This bit is set by the TW when the page is accessed. The
OS can use this bit as an indication which pages are not
frequently used when it needs to swap out a page.

7 Large Page When this bit is set in a L1 PT entry it indicates the en-
try holds the address mapping of a large page instead of a
pointer to a L2 page table.

control register associated with the MMU that is global and not context-specific.

Flushing parameters (MMU FHI, MMU FLO & MMU FID)
This set of registers are used to supply parameters for a fine grained flushing operation.
Available flushing operations are: flush all, flush every entry with a specific virtual tag,
flush a specific range of virtual tags, flushing all entries with a specific ASID and all
combinations of these modes. The MMU FID register is used to set the ASID which all
entries associated with must be flushed. The MMU FHI and MMU FLO registers are
used to specify the lower and upper boundaries of a range of virtual tags which will be
flushed. When a single virtual tag needs to be flushed, the MMU FLO register is used
to supply this tag. The flushing mode and flushing trigger are part of the MMU CR
register. These registers are context-specific so that each active context has its own
flushing interface. Recall however from Section 3.6 that, whenever a context issues a
flush command, all TLBs, execute the flush ensuring coherency.

MMU Control Register (MMU CR)
This is the main control register for the MMU. In this section the fields illustrated in
Figure 4.14 will be clarified.

• Mode, This three bit field is used to specify the flushing mode. The possible values
and corresponding modes are listed in Table 4.2.

4.9. REGISTER INTERFACE 57

MMU Con�guration Register (MMUC)

Mode w W F

Large Page SizePage Size

MMU Control Register (MMU_CR)

Context Registers

Global Register

TLB Direction

0

012462431

232431

MMU Page Table Pointer Register (MMU_PTP)

Page Table Pointer

031

Flush Range High Register (MMU_FHI)

Flush Range High

031

Flush Range Low Register (MMU_FLO)

Flush Range Low

031

MMU ASID Register (MMU_ASI)

Application Space ID

0n

Flush ASID Register (MMU_FID)

Flush ASID

0n

Figure 4.14: Overview of all the control registers added for the MMU and the layout of
their fields. An explanation of the fields and their function is given in Section 4.9.

• F, Writing a ’1’ to this bit field issues a flush command. It is located the same byte
as the flush mode field so the mode can be selected in the same write operation.

• W, Writing a ’1’ to this bit field enables the write-to-clean-page trap. This trap
is useful when the OS implements a copy-on-write scheme.

• w, Writing a ’1’ to this field disables the write-to-clean-page trap.

• TLB Direction, This field can be used to direct TLB misses to a specific issue
lane. This means that all updates are performed on the lane specified. This can
be useful if it is already known that the process will switch to that lane in the

58 CHAPTER 4. HARDWARE IMPLEMENTATION

Table 4.2: This table lists all possible values for the flush mode field in the MMU CR.

Value Flush mode

”000” Flush all
”001” Flush all entries with a certain virtual tag
”010” Flush a range of virtual tags
”100” Flush all entries with a certain ASID
”101” Flush all entries with a certain ASID and a certain virtual tag
”110” Flsuh all entries with a certain ASID and a range of virtual tags

future. This will only work if the value is set to the index of a lane the process
is currently running on. All other possible values for the field will result in the
default behaviour where updates are evenly distributed over the coupled lanes.

Process specific parameters (MMU PTP MMU ASI)
Differentiation between virtual address spaces is done based on the ASID and PTP. The
ASID is used to denote which context a TLB entry belongs to. The PTP is used by
the TW to access the correct PT when a TLB miss occurs. These parameters must be
updated to execute a process switch.

4.10 Conclusion

This chapter details the implementation of the MMU and its subcomponents in recon-
figurable hardware. In chapter 3 the architecture for the memory hierarchy was selected.
This architecture places the TLB between the core and the cache. The interface between
these three components is an extension of the baseline interface between the core and
the cache. The MMU can assert stall signals to halt the operation of the cache and
core when it fails to translate an address tag in a single cycle. The MMUs operation is
controlled through a memory mapped register interface.

The TLB is the most complex component of the MMU. This is for the most part
caused by the CAM, which is is not well supported by the FPGAs hardware resources.
The CAM is implemented in BRAM resources to allow for larger TLB depths. One
implication of this choice is that the CAM can contain stale entries. Since BRAMs
cannot be cleared globally in a quick way, another solution is designed to handle this
problem. The implemented solution is a deferred clean up mechanism. This entails that
faulty entries are removed from the CAM whenever they are encounters.

The ρ-VEX MMU supports both design-time configuration and run-time reconfigu-
ration. There are multiple parameters to tailor the MMU to a specific application. These
include the page size and the TLB depth. A mechanism is implemented to distribute
TLB reads and writes over all TLBs in a group of coupled lanes. This allows lanes to
use the address mappings present in the TLBs of coupled lanes as well as their own.

Functional Verification 5
The main reason to add an Memory Management Unit (MMU) to the ρ-VEX system is
to be able to run an Operating System (OS) on the platform. It is impossible to run
an OS which implements virtual addressing on any platform without an MMU and an
MMU has little use if it there is no OS running to use it. Unfortunately designing an
MMU for the ρ-VEX and porting Linux are two separate projects which are too large
to be completed in a single master thesis project. There currently is a Linux version
available for the ρ-VEX but because this was developed before the ρ-VEX MMU, a
version a Linux was ported which is stripped of the memory management functionality.
This work was also done by a master student and is presented in [36]. For this reason,
at the completion of this project, it is not possible to test the MMU in synergy with an
OS.

To still be able to verify that the system is capable to support an OS, it is necessary
to determine the minimum hardware requirements a system needs for this purpose. Since
there is already a working port of Linux in existence, this verification is only required
for the parts that relate to virtual addressing. In Section 2.6, the minimal functional
requirements of the MMU were listed. Based on these core functionalities, verification
software was designed. This piece of software can be viewed as the essence of an OS,
implementing only the most fundamental tasks such as virtual address spaces for each
process, task switching, and memory protection. This software is described in Section
5.1. Evaluation of the verification software will take place in Section 5.2. Finally in
Section 5.3, bugs which are still present in the system will be discussed.

5.1 Verification Software Design

The raison d’etre for an OS is to allow multiple processes to share the hardware of a
single computing platform. In both uniprocessor and multiprocessor systems this is done
by multiplexing the processors resources in time to different processes. Whenever pro-
cesses cannot terminate within their respective timeslots, the processor preempts these
processes and assigns the hardware resources to another task. Additionally, to protect
processes running concurrently on the system from each other, the systems memory is
also divided between the different tasks. Each process can request a part of the memory
for it own use which is protected from access by other processes. Memory protection
is enforced by a unique mapping from the processes virtual pages to physical frames
which are solely accessible by the specific process. Because the translation of addresses
is performed in hardware by the MMU this system can not be circumvented. The OS
controls the division of memory resources because it is in charge of creating and main-
taining virtual to physical memory mappings which are stored in each processes private
Page Table (PT).

59

60 CHAPTER 5. FUNCTIONAL VERIFICATION

The above description of an OS is emulated by the verification software written
to test the ρ-VEX MMU. In this software, multiple Powerstone benchmarks are run
in their own virtual address space and are preemptively switched at set intervals. The
program terminates when each benchmark is complete. These processes are identified by
unique Address Space Identifiers (ASIDs), which ensure that they cannot use each others
mappings present in the Translation Look-aside Buffers (TLBs). When the program
starts, first some initialization code is run in kernel mode which performs tasks such
as configuring the core, the MMU, the timer interrupt peripheral, and clearing each
process’ L1 page table. After the initialization is completed, the code switches to the
first benchmark which is run in its own virtual address space. Because the software
uses demand paging this immediately leads to an instruction page fault since there
are no mappings in the TLB yet. When the MMU issues a pagefault, the softwares
Interrupt Service Routine (ISR) is invoked which updates the processes private PT. In
the verification software, the virtual to physical mappings are simply offsets1 which are
unique for each process. This results in each benchmark occupying subsequent sections
of the physical memory. This virtual to physical mapping is illustrated in Figure 5.1.

Task switching
At a set interval in time during the program external interrupts are triggered by a timer
peripheral. Each time the core receives an interrupt the programs ISR performs a task
switch. This entails storing the context presently running on the core and restoring
the context of the process that is about to run. The MMUs control registers for the
Page Table Pointer (PTP) and ASID are also updated so that the MMU will translate
incoming virtual addresses to the newly selected address space. In Figure 5.2, part of a
modelsim wave viewer window is shown, which illustrates this process.

The task switching mechanism is included in the program for two reasons. Primarily
this is a test to check if the MMU is able to separate the different address spaces from
each other. More specifically to see if the TLBs are able to hold mappings for different
processes at the same time and to differentiate between them correctly. The second rea-
son is to increase the pressure on the TLBs. When multiple programs run concurrently,
they have to share the available slots. This enables a better performance comparison
between different MMU configurations which will be performed in Section 6.2.

1The mapping of virtual pages to physical frames is a high level task in the OS since it is related
to the division of memory resources amongst processes. Because this is not relevant for evaluating the
hardware, the most simple mapping solution is implemented.

5.1. VERIFICATION SOFTWARE DESIGN 61

mmu_init.c

scratch memory

benchmark_0.bin

benchmark_1.bin

benchmark_2.bin

benchmark_3.bin

super stack 0
super stack 1

super stack 2

super stack 3

page table 0

page table 1

page table 2

page table 3

0x000000x00000

0x40000

0x80000

0x90000

0xC0000

0x100000

0x1C0000

0x200000

0x240000

0x280000

0x2C0000

Physical MemoryVirtual Memory

text

data

BSS

Stack

Figure 5.1: This diagram shows the physical memory layout of the verification software.
Also shown how a virtual address space of one of the benchmarks is mapped to physical
addresses.

Figure 5.2: This is a waveform of the ρ-VEX running the verification software. Shown
is the enable signal for the MMU for the four different hardware contexts. This image
visualizes the preemptive task switching and pagefaulting in the software. Only one
context is active at a time, occupying the entire core. The notches occur when a pagefault
is serviced. These are handles in kernel mode in which the MMU is bypassed. Note
that this is taken from an earlier version of the test software which relied on hardware
context switches. The version used for this thesis uses software contexts running on a
single hardware context. This was done to support eight processes instead of four.

62 CHAPTER 5. FUNCTIONAL VERIFICATION

5.2 Verification Software Evaluation

The minimal requirements of the MMU to support an OS, which implements virtual
addressing was listed in Section 2.6. To increase ease of reading, these points will be
listed again in this section.

1. Autonomous address translation of mappings stored in the TLB.

2. Automatic checking of access rights (read/write and protection level) on every page
access.

3. A way to insert entries in the TLB; either a software interface or an Table Walker
(TW) unit.

4. In case of a hardware managed TLB, a mechanism to stall the core upon a table
walk and a clearly defined PT layout.

5. A mechanism to issue a trap when a page fault or access violation occus.

6. A software interface to flush TLB entries.

7. A mechanism to bypass the MMU for system initialization and kernel code that is
executed in physical address space.

A comparison will be made between these points and the verification software to
ascertain that the minimum functionality is covered by the implementation of the
MMU.

1. The software test this extensively by running each benchmark in virtual mode.
This feature is used at every memory access made by the user processes which
in this case are the benchmarks. The correct termination of each benchmark is a
good test if the mapping is actually done correctly.

2. This feature is not used in the verification software.

3. The software relies on the TW to load entries into the TLB the software is not
able to do this since there is no interface for this as the MMU is implemented as
hardware managed.

4. The stall mechanism is required for proper functioning of the system. If the OS
and TW do not agree on the PT layout, the program would not be able to handle
pagefaults since it cannot update the PT in a way such that the TW can find the
correct mappings.2

5. This feature is used by the software to trigger the page fault handler which is
used many times during the software’s runs. Without this feature operational the
software would not be able to handle pagefaults.

2Note that in the ρ-VEX the PT layout is well defined but not fixed. The system has parameters
which determine the size of regular and large pages. These sizes also influence and layout and size of the
two levels of the PT. Section 4.8 describes the exact layout of the tables and their entries.

5.3. IMPLEMENTATION BUGS 63

6. This feature is used to flush all TLBs at the start of the program. This ensures
that each consecutive run of the program has the same initial conditions. The fine
grained flushing capabilities of the MMU are not used in this test.

7. When the software boots, the first part of the program which is used for initializa-
tion purposes and also the ISR code are both run in physical mode. This shows
how the MMU can be bypassed on start-up and if desired inside trap handlers.

This leaves feature two, access right checking to be tested separately. This is done by
adapting the software described in this chapter to test this function specifically. The
rest of this section describes how this test is performed.

Access rights
Access right checking in the MMU is performed by the TLB on each translation. The
access right bits which are stored alongside each address mapping (kernel-page and write-
access) are compared to the access rights and operation performed by the active context.
When a kernel page is accessed by a process which is running in user mode, a kernel
space violation trap is generated. When a write is performed to a read-only page, a
write-access-violation trap is generated.

To verify this mechanism functions correctly, the verification software is adapted to
deliberately trigger these kinds of traps. This is done by modifying the page-fault handler
to raise the access restrictions for the pages it allocates for one of the user processes.
After such a page is allocated, the corresponding user program will try to access it
without the proper rights. This leads to trap of one of the types described earlier. That
this trap is actually thrown and is recognized by the processor can de gathered from a
print message put into the handler for the trap.

5.3 Implementation Bugs

While the core functionality of the MMU is operational, there is still a bug in the
implementation. This bug can appear while running larger programs in virtual mode and
at this time, inhibit thorough testing of the implementation on the Field-Programmable
Gate Array (FPGA). The issue sometimes manifests itself when the core performs an
Return from Interrupt (RFI) instruction at the end of executing the trap handler. When
this RFI instruction is issued, the core jumps to the point where the trap occurred,
freezes and no more instructions are executed afterwards. While the occurrence of the
issue is deterministic, it happens only in some cases. Small changes is the software
can sometimes avoid this bug to surface. The specific conditions which leads to the
appearance of this problem have not yet been identified.

Some time has already been spent in locating the cause of this issue. The insertion
of performance counters that keep track of the amount of stalled cycled have excluded
a deadlock caused by the MMU. It is possible that the issue is caused by a bug in the
core’s trap mechanism that has not been encountered before. Before the addition of
the MMU, the trap mechanism has never been used extensively. A complicating factor
is that this issue never occurs when simulating the system. This makes the debugging

64 CHAPTER 5. FUNCTIONAL VERIFICATION

process much more difficult and time-consuming. Unfortunately, there is not enough
time in the course of this project to spent on locating and solving this issue.

Running the verification software described in Section 5.1 has been successful, al-
though preemtive task switching had to be disabled. Successful attempts to run software
in virtual mode on the FPGA relied on avoiding these bugs to appear by inserting No
Operations (NOPs) at certain points in the ISR. Therefore, most of the measurements
presented in Chapter 6 are obtained by simulations.

5.4 Conclusion

In this chapter the functionality of the added hardware is verified. This task is compli-
cated by the fact that there is no OS available for testing. Custom software was designed
to emulate the function of an OS. The software is designed to rely on hardware support
on the points listed in Section 2.6. The rationale is that an MMU able to support the
verification software, it would also be able to support a real OS. The last part of the
chapter discussed bugs that are still unsolved.

Measurements 6
in Chapter 5, a functional evaluation of the implemented hardware was performed. This
chapter will try to evaluate the performance of the new ρ-VEX system with virtual
memory support. The performance cost of virtual memory consists of two components.
When a pagefault occurs, a software layer usually, located in the Operating System (OS),
needs to bring a missing frame into memory and update the Page Table (PT). This
software layer falls outside the scope of this project and will not be discussed here. The
other mechanism, that increases programs latency, are Translation Look-aside Buffer
(TLB) misses. These can be solved by a table walk if the missing memory mapping is
present in the PT. The number of entries the TLB can hold and the memory access
pattern of the application determine how often misses occur. When multiple programs
are run concurrently on a processor, they need to share the available TLB space. The
ρ-VEX Memory Management Unit (MMU) includes Address Space Identifiers (ASIDs)
in the TLB entries to distinguish between address mapping of different processes.

In Section 6.1, the new system is compared to the baseline version in terms of area
increase and operating frequency. Section 6.2 quantifies the performance overhead of
supporting virtual memory. The effect of different settings of the static configuration
parameters on this overhead is measured and compared. Section 6.3 explores the per-
formance behaviour of the ρ-VEX virtual memory hardware in scenarios where dynamic
reconfiguration is performed.

6.1 Area utilization and Operating Frequency

Adding virtual memory hardware support to the ρ-VEX obviously incurs a price. The
increase in Field-Programmable Gate Array (FPGA) resource utilization is of course
unavoidable. A comparison of the old and new ρ-VEX systems is given in Table 6.1.
The results are for a dynamic 8-issue ρ-VEX with a 16 KiB instruction cache and a 4 KiB
data cache. The MMU is configured to its base configuration, 32 entry TLBs and a page
size of 4 KiB. The largest increase is in utilized Block RAM (BRAM) resources. These
are used for the Content Addressable Memory (CAM) which is present in every TLB
in the system. One of the reasons for implementing the CAMs in BRAMs was because
these are readily available of the target FPGA. There is also a significant increase in
Lookup Table (LUT) utilization. This is probably due to the many features that have
been added to the MMU in the course of this project.

Unfortunately the operating frequency of the ρ-VEX system has also suffered from
the addition of the MMU. When synthesized for a Virtex 7 FPGA, the baseline imple-
mentation reaches around 75 MHz. The new ρ-VEX system only reaches 47 MHz. When
a lot of effort is put in optimization by the synthesis tool a frequency of 57 MHz can be
reached. There might be some room for improvement of these figures if some more time

65

66 CHAPTER 6. MEASUREMENTS

is spent studying the critical path and optimizing the design.
The performance decrease is probably also partly inherent to the design. The choice

of implementing the TLBs CAM in BRAMs was explained in Section 4.4.1. This has
a drawback which was not taken into account when the system was designed. Using
BRAM resources limits the routing freedom of the synthesis tool. Inside the FPGA the
BRAM resources are located in columns at certain physical locations. Using them either
fixes the location of the TLBs or requires routing the signals from the TLBs location to
the locations of the BRAM blocks. In either case, this will lead to larger routing delays
for the data path. Implementing the CAMs in slice resources avoids this penalty.

Another architectural decision was to implement a Virtually Indexed Physically
Tagged (VIPT) cache. Refer to Section 3.5 for this discussion. This type of cache the-
oretically allows a simple memory hierarchy without the added latency of a Physically
Indexed Physically Tagged (PIPT) cache. However, with the current increase in op-
erating frequency, the added latency seems preferably. Both these alternatives will be
further discussed in Section 7.4 as future work.

6.2 Static Configuration Evaluation

The ρ-VEX MMU is designed to comply with the ρ-VEX philosophy of design-time
configurability and run-time reconfigurability. This section will explore how different
configuration parameters for the MMU influence the performance of the verification
software described in this chapter. These results can loosely be generalized to any
multitasking system that employs virtualization. Besides the enable flag, the MMU
can be configured in four dimensions; TLB depth, page size, large page size, and ASID
bit-width.

The comparisons performed in this section are based on varying the first two. Using
and varying the size of large pages has a similar effect as increasing the regular page size,
only more fine grained. Therefore, this feature will not be explored. Sizing the ASID
can have advantages in a system where a large number of tasks are run concurrently.
Increasing this parameter can help avoid reassigning ASIDs between processes. Because
this parameter does not affect the performance of the hardware, it will also not be used
in this sections evaluation.

In the verification software, multiple programs run concurrency on the ρ-VEX,
thereby contending for TLB space. If the TLB is not large enough, this will lead to
TLB replacements. When this happens the number of TLB misses the program encoun-
ters during its run increases. Inside the MMU, there are performance counters which

Table 6.1: This table compares the resource utilization of the ρ-VEX system that incor-
porates the memory management hardware to the baseline implementation.

recourse old design new design increase

slices 24051 25604 6.4%
LUTs 61891 70880 14.5%
flip-flops 30488 33877 11.1%
BRAMs 225 273 21.3%

6.2. STATIC CONFIGURATION EVALUATION 67

count how many times these events occur.
Each TLB miss increases the programs run-time because the Table Walker (TW)

needs to perform a table walk. This can obviously be minimized by increasing the
number of entries each TLB can hold. Another way to decrease the number of TLB
misses is to increase the page size. When the page sizes is increased programs generally
require less pages to be allocated for them. This also relieves some of the pressure on
the TLBs because each entry spans a larger portion of the memory. The drawback of
larger pages sizes is that the memory utilization of programs can increase due to internal
fragmentation. In Table 6.2 and 6.3 the results are shown of running the evaluation
software on a ρ-VEX processor configured as an 8-issue and a 2-issue respectively.

The graphs in Figure 6.1 visualize the essence of these tables more clearly. The
number of TLB misses was plotted because they this relates directly to the amount of
stall cycles caused by the MMU. As expected increasing the TLB depth and page size
both have a positive effect on the hardware latency overhead of memory virtualization.
This is beneficial up to the point where the TLBs are simply large enough to hold all the
mappings of each process present in the system. The attentively reader might note that
in terms of resource utilization all TLBs which have up to 32 entries use the same amount
of BRAMs. Therefore there is no reason to use TLBs which have four, eight, or sixteen
entries. These smaller TLB sizes are chosen for this test simply because these eight
benchmarks do not use a lot of memory. In a real system where an OS runs hundreds of
processes concurrently, TLB sizes of 32, 64 or larger are more appropriate.

Notable in the results is also the difference between the software run on a ρ-VEX
configured as an 8-issue or 2-issue system. In the 8-issue system the data TLB of all lanes
are available which leads to the amount of space being four times as large compared to
the 2-issue system. The effect of this can be clearly seen when comparing Figures 6.1(b)
and 6.1(d).

The tables and graph clearly show that increasing the page size can have a positive
effect on the latency of programs due to less TLB misses. The trade-off however is an
increased memory footprint of the program due to internal fragmentation of the memory.
Figure 6.2 shows how this scales for the verification software. Programs usually occupy
a contiguous area of virtual memory, in that case only the highest page suffers from
internal fragmentation. This means that this problem is more pronounced when running
many small programs then when running fewer large ones. Note that because of the
choice for a VIPT cache, the page size also limits the maximal size of the data cache.
Therefore the choice for a certain page size is a trade-off between less TLB misses and a
larger maximal data cache size versus higher memory use.

One last point to notice is that in general increase in cycles caused by the virtual-
ization hardware is generally low. Only in cases where programs access a large number
of pages in proportion to the number of TLB entries, which leading to thrashing, is
this a serious bottleneck. The larger cost of virtual addressing is in handling pagefaults
which is done in software and can cost hundreds to thousands of cycles. This is very
implementation dependant and falls outside the scope of this project.

68 CHAPTER 6. MEASUREMENTS

4 8 16 32

0

20

40

60

80

TLB depth

T
L

B
m

is
se

s

4 KiB
8 KiB
16 KiB

(a) instruction misses on an 8-issue core

4 8 16 32

0

50

100

TLB depth

T
L

B
m

is
se

s

4 KiB
8 KiB
16 KiB

(b) data misses on an 8-issue core

4 8 16 32

0

20

40

60

80

TLB depth

T
L

B
m

is
se

s

4 KiB
8 KiB
16 KiB

(c) instruction misses on a 2-issue core

4 8 16 32

0

100

200

TLB depth

T
L

B
m

is
se

s

4 KiB
8 KiB
16 KiB

(d) data misses on a 2-issue core

Figure 6.1: These graphs show the number of TLB misses encountered when running
the verification software on different static configurations of the ρ-VEX.

6.3 Dynamic Reconfiguration Evaluation

In Section 4.7, a mechanism was presented that allows the core to broadcast addresses
to all data TLBs of coupled issue lanes. This effectively scales TLB size of a hardware
context linearly with the number of coupled lanes. Section 4.7.2 described another feature
that allows the core to direct TLB updates to a specific TLB in a coupled configuration.
This second mechanism allows the the core to anticipate to reconfigurations in the near
future. These two features can be used to minimize the amount of TLB misses which
occur in the course of running a (set of) application(s). TLB misses will therefore be used
as the main performance metric in this chapter. The benchmarks and scenarios used in
this chapter are all purely synthetic. They are designed to generate a certain pattern
of page accesses. The results of the measurements will be evaluated and conclusions are
drawn that can be extended to real scenarios.

6.3. DYNAMIC RECONFIGURATION EVALUATION 69

4
ki

B
pa

ge
s

8
ki

B
pa

ge
s

16
ki

B
pa

ge
s

0

100

200

300

400

144

208

352

m
em

or
y

u
ti

li
za

ti
o
n

(k
iB

)

Figure 6.2: This graph shows how the verification software’s memory utilization rises with
increased page size due to internal fragmentation of the code. Note that the increase is
extreme in this case because the included benchmarks only use one or two pages. for
larger programs the increase will be less significant.

Table 6.2: Performance results of the MMU for different page sizes and TLB depths.
These numbers were obtained by running eight Powerstone benchmarks in the software
described in Section 5.1 in 8-issue mode with a task switching period of 10000 cycles.

TLB Depth: 4 8 16 32

Page Size: 4 KiB instruction TLB misses: 60 42 24 24
instruction page faults: 12 data TLB misses: 89 51 51 51
data page faults: 24 user mode cycles: 200000 199450 198512 198512
memory utilization: 144 KiB MMU stall cycles: 2839 1804 1534 1534

MMU stall %: 1.42% 0.90% 0.78% 0.78%
task switches: 26 26 26 26

Page Size: 8 KiB instruction TLB misses: 41 22 20 20
instruction page faults: 10 data TLB misses: 44 35 35 35
data page faults: 16 user mode cycles: 197349 196786 196821 196821
memory utilization: 208 KiB MMU stall cycles: 1641 1176 1146 1146

MMU stall %: 0.83% 0.60% 0.58% 0.58%
task switches: 25 24 24 24

Page Size: 16 KiB instruction TLB misses: 34 19 18 18
instruction page faults: 9 data TLB misses: 29 29 29 29
data page faults: 13 user mode cycles: 197561 197461 197480 197480
memory utilization: 352 KiB MMU stall cycles: 1230 1005 990 990

MMU stall %: 0.62% 0.51% 0.50% 0.50%
task switches: 24 24 24 24

70 CHAPTER 6. MEASUREMENTS

Table 6.3: The same test results as in Table 6.2 but run on a 2-issue ρ-VEX

TLB Depth: 4 8 16 32

Page Size: 4 KiB instruction TLB misses: 67 46 24 24
instruction page faults: 12 data TLB misses: 159 122 80 51
data page faults: 24 user mode cycles: 271395 270716 269875 269550
memory utilization: 144 KiB MMU stall cycles: 3790 2937 1876 1365

MMU stall %: 1.40% 1.08% 0.70% 0.51%
task switches: 36 36 36 36

Page Size: 8 KiB instruction TLB misses: 47 22 20 20
instruction page faults: 10 data TLB misses: 98 70 47 35
data page faults: 16 user mode cycles: 270450 270007 269703 269593
memory utilization: 208 KiB MMU stall cycles: 2473 1701 1231 1033

MMU stall %: 0.91% 0.63% 0.46% 0.38%
task switches: 34 34 34 34

Page Size: 16 KiB instruction TLB misses: 38 19 18 18
instruction page faults: 9 data TLB misses: 78 57 29 29
data page faults: 13 user mode cycles: 271727 271172 270839 270839
memory utilization: 352 KiB MMU stall cycles: 1997 1392 866 866

MMU stall %: 0.73% 0.51% 0.32% 0.32%
task switches: 34 33 33 33

time

page 0
page 1

page n

page 0
page 1

page n

time

Situation 2: cyclic page access patternSituation 1: moving page access pattern

Figure 6.3: These diagrams give a schematic representation of the page access patterns
of the two benchmarks designed to measure the the performance effects of dynamic
reconfiguration on the MMU.

6.3.1 Synthetic Benchmarks

Besides the hardware configuration, another factor that influences the performance of the
virtual memory hardware is the page access pattern of the application. To be able to take
this into consideration, two synthetic benchmarks are designed. The page access pattern
of these two programs are depicted schematically in Figure 6.3. The first benchmark
does an element wise summation of a number of vectors. The program has a moving
window of the vectors it operates on. Furthermore, each vector is located on another
memory page. This forces the program to access an unusual large number of pages each
triggering a pagefault. The second benchmark multiplies a matrix with a transposed
version of itself. In this program, each row of the matrix is also located on another page.
This program displays a cyclic page access pattern.

6.3. DYNAMIC RECONFIGURATION EVALUATION 71

inclusive issue-width expansion exclusive issue-width expansion

Figure 6.4: The blocks in this diagram depict an 8-issue ρ-VEX core which can be divided
into maximum of four 2-issue cores. The diagram depicts the two scenarios used for the
measurements presented in Section 6.3.2.

6.3.2 Lane Expansion

In the ρ-VEX system, a process can be migrated to a wider core when it requires more
hardware resources. It can be advantageous if the cache blocks and TLBs of the desig-
nated lanes are already initialized, avoiding a so called cold start. This is the case if the
set of lanes the process migrates to includes the lane(s) it has been running on.

To get an idea of the benefits of this inclusion, a comparison is made between two
different scenarios. In both scenarios, a benchmark program is started on a 2-issue ρ-VEX
core. During the course of the program the context is repeatedly migrated to a 4-issue
ρ-VEX core and back. In one situation the expansion includes the initial lane and in the
second situation it does not. In Figure 6.6 these two situations are illustrated graphically.
The switching is triggered by an external interrupt, whose interval is counted in user
mode cycles. This means that all time spend servicing the page faults and handling the
external interrupt does not influence the results.

This experiment is run for both benchmarks outlined in Section 6.3.1. This allows
taking the memory access pattern of the application into account as well. Figure 6.5(a)
shows the results for both experiments. In case of moving page access, inclusive lane
switching can clearly have a positive effect. This effect holds as long as there are active
pages in the TLB when switching back to an older configuration. If the switch period is
longer than the page window, the positive effect is lost.

Inclusive lane switching can even have a negative effect. This can be seen in the graph
in Figure 6.5(b). The cyclic benchmark differs from the other one in that it operates on
more pages than the TLB can hold. This leads to thrashing, which results in the higher
number of TLB misses than for the other benchmark. The reason for the performance
penalty of inclusive switching comes from the fact that the application has access to only
two TLBs. In the exclusive expansion scenario, there are three TLBs used during the
course of the program. This effect can overpower the positive effect of lane inclusion.

72 CHAPTER 6. MEASUREMENTS

25
0

50
0

10
00

20
00

40
00

100

200

300

reconfiguration interval (cycles)

d
at

a
T

L
B

m
is

se
s

inclusive
exclusive

(a) Moving page access pattern.

25
0

50
0

10
00

20
00

40
00

200

400

600

800

1,000

1,200

reconfiguration interval (cycles)

d
at

a
T

L
B

m
is

se
s

inclusive
exclusive

(b) Cyclic page access pattern.

Figure 6.5: Results of the lane expansion comparison for the two different benchmarks.
The experiments are performed on a ρ-VEX configured with a page size of 4 KiB and 8
entry deep TLBs.

6.3.3 Lane Reduction

In this section, an experiment is described that measures the benefits of the data TLB
update direction mechanism, presented in Section 4.7.2. The scenario for this experiment
is a migration of a hardware context that runs on a 8-issue ρ-VEX core to a 2-issue core.
The context alternates between these configurations every 8000 cycles. A varying number

6.4. CONCLUSION 73

 issue-width reduction

Figure 6.6: This diagram illustrates the scenario of the lane reduction experiments.

of cycles before the lane reduction is scheduled, the context will direct its data TLB
updates to a specific TLB. This can avoid misses since all recently added translations
are already present in the TLB after the migration. The benchmark with moving page
access pattern is used in this experiment. In Figure 6.7 the number of data TLB misses
is plotted for different direction periods. The plot shows the number of additional misses
due to reconfiguration, normalized to the situation where no TLB direction is performed.
The graph shows that the direction strategy can offer a modest benefit, but can also
increase the number of misses. This negative effect stems from the fact that during the
direction period, only one data TLB is used. The reduction in TLB space makes it more
likely that updates replace an entry that is still in use. An optimal direction period is
related to the average time that pages are used in the application. Ideally, all updates
during the direction period are referenced after the reconfiguration. If this period is too
large, the reduction in TLB space overpowers the effect of avoiding cold starts.

6.4 Conclusion

This chapter first makes a comparison between the baseline platform and the extended
platform regarding area increase and operating frequency. The new design primarily
increases the number of BRAMs and LUT resource by 21.3% and 14.5% respectively. A
much more significant cost is the decrease in operating frequency from 75 MHZ down
to 47 MHz. It might be possible to alleviate this penalty if some more effort is spent
in locating and removing unnecessary critical paths. However, it might also be inherent
to the architectural choices made during the course of this project. The decision to
implement the CAMs in BRAMs and to implement a VIPT cache might have incurred
this cost.

In the following section, the verification software described in Chapter 5 was used
to evaluate the performance of the MMU in several static configurations. The effects
of varying the TLB size and page sizes on the number of TLB misses was measured.
It was shown that increasing these parameters can significantly reduce the number of

74 CHAPTER 6. MEASUREMENTS

0
10

00
20

00
30

00
40

00
50

00
60

00
70

00
80

00

0.8

1

1.2

update direction period (cycles)

d
at

a
T

L
B

m
is

se
s

Figure 6.7: Results of the lane reduction experiments. The experiments are performed
on a ρ-VEX configured with a page size of 4 KiB and a migration period of 8000 (user
mode) cycles, running the benchmark that exhibits the moving page access pattern.

TLB misses. At the same time these measurements have shown the positive effect of the
data TLB coalescing mechanism described in Section 4.7.1. Due to this mechanism, the
number of data misses is significantly lower on an 8-issue compared to an 2-issue.

Subsequently, two scenarios were explored to measure the performance of the address
translation hardware in relation to dynamic reconfiguration. In the first experiment,
the benefit of avoiding a cold start when expanding to a wider core was measured. It
was shown that the extent of this advantage is dependant on the page access pattern
of the application. The second experiment measured the possible benefits of the TLB
update direction mechanism described in Section 4.7.2. The results showed that a modest
advantage can be obtained if the direction period is chosen carefully.

Conclusion 7
In this chapter the results of the project are discussed. In Section 1.2 the goals of this
project were defined. This chapter will evaluate the final result with respect to these
goals.

Section 7.1 summarizes the chapters of this thesis. In Section 7.2 the main contri-
butions of this project will be listed. Finally in Section 7.4 recommendations for future
work will be discussed.

7.1 Summary

In Chapter 2, first some background information about the implementation platform
for the project was discussed. The first section of the chapter explained how Field-
Programmable Gate Arrays (FPGAs) work and what their benefits are. Subsequently,
it was explained how processors, referred to as softcore, can be implemented in this
technology. In the following section, the general concept of Very Long Instruction Word
(VLIW) processors and their advantages were explained.

This established the basis that allowed for the introduction of the ρ-VEX processor.
The ρ-VEX is a VLIW softcore processor implemented in the reconfigurable fabric of an
FPGA. Being a VLIW processor, the ρ-VEX issues instruction in bundles of two or more.
This increases the Instruction Level Parallelism (ILP) and thereby the performance of
application with sufficient levels of parallelism.

The ρ-VEX can be configured in a number of ways at design-time. This enables tailor-
ing the ρ-VEX system to an specific application, optimizing performance and minimizing
area. Besides these static configuration parameters, the ρ-VEX is also dynamically re-
configurable during run-time. This allows the ρ-VEX processor to switch between a
single wide VLIW processor or multiple smaller cores. This feature enables running a
single process with with high ILP or multiple processes with less parallelism, thereby
increasing Thread Level Parallelism (TLP). Being able to switch between these configu-
rations has implications for the memory system. The ρ-VEX system already features a
cache that supports the core in each possible configuration. One of the challenges of this
thesis project is to design and implement an Memory Management Unit (MMU) with
similar properties.

The second part of Chapter 2 explained the key concepts of virtual memory using
paging. In a system that supports paging, each process has its own virtual address space.
The mapping of this address space to physical memory is controlled by the Operating
System (OS) and is transparent to user programs. The translation of addresses is done
dynamically by dedicated hardware called the MMU. The MMU contains multiple caches
called Translation Look-aside Buffers (TLBs) which are used to cache the virtual to
physical mappings. The address mappings created by the OS are stored in main memory

75

76 CHAPTER 7. CONCLUSION

in a process specific data structure called a Page Table (PT). When an address is
referenced that is not contained in the TLB, another hardware component called the
Table Walker (TW) searches the PT for the missing translation. When the translation
is not present in the PT, the TW generates an interrupt to call for OS intervention. The
OS then invokes a routine that bring the missing page into memory and updates the PT.

In the chapters last section, a listing was made of the minimum set of functions that
virtual address hardware should posses to support an OS. In Chapter 5, this list is
revisited and used to evaluate the final implementation.

In Chapter 3, the high level design choices regarding the ρ-VEX MMU were explained
and substantiated. First an overview was given of the different memory hierarchies pos-
sible in a system with both virtual address support and caches. After weighing the
advantages and drawbacks of each of these architectures, the decision for a Virtually
Indexed Physically Tagged (VIPT) type cache was explained. This type of cache avoid
most of the complexities associated with a Virtually Indexed Virtually Tagged (VIVT)
cache, especially in a multicore system like the ρ-VEX. Additionally, because address
translation is not required before indexing the cache, the VIPT cache does not increase
the length of the pipeline like a Physically Indexed Physically Tagged (PIPT) cache does.
The main drawback of a VIPT cache is that its size is restricted by the page size. This can
be extended by increasing the set associativity of the cache. Other ways to circumvent
this restriction are increasing the page size and page coloring. Subsequently, the impli-
cations of the ρ-VEX dynamic reconfigurable nature for the MMU were discussed. The
challenge lies in using the instantiated resources efficiently in all configurations. In the
chapters last section, a few additional optimizations were proposed. These are relatively
easy to implement and do not incur a high price complexity wise. These optimizations
are possible in the ρ-VEX because the TLBs are tightly coupled to each other.

Chapter 4 details the implementation of the MMU and its subcomponents in recon-
figurable hardware. The selected architecture places the TLB between the core and the
cache. The interface between these three components is an extension of the baseline
interface between the core and the cache. The MMU can assert stall signals to halt the
operation of the cache and core when it fails to translate an address tag in a single cycle.
The MMUs operation is controlled through a memory mapped register interface.

The TLB is the most complex component of the MMU. This is for the most part
caused by the Content Addressable Memory (CAM), which is is not well supported by
the FPGAs hardware resources. The CAM is implemented in Block RAM (BRAM)
resources to allow for larger TLB depths. One implication of this choice is that the
CAM can contain stale entries. Since BRAMs cannot be cleared globally in a quick
way, another solution is designed to handle this problem. The implemented solution is
a deferred clean up mechanism. This entails that faulty entries are removed from the
CAM whenever they are encounters.

The ρ-VEX MMU supports both design-time configuration and run-time reconfigu-
ration. There are multiple parameters to tailor the MMU to a specific application. These
include the page size and the TLB depth. A mechanism is implemented to distribute
TLB reads and writes over all TLBs in a group of coupled lanes. This allows lanes to
use the address mappings present in the TLBs of coupled lanes as well as their own.

In Chapter 5, the functionality of the design is verified. This task is complicated

7.2. MAIN CONTRIBUTIONS 77

by the fact that there is no OS available for testing. Custom software was designed to
emulate the function of an OS. The software is designed to rely on hardware support
on the points listed in Section 2.6. The rationale is that an MMU able to support
the verification software, it would also be able to support a real OS. this chapter also
discussed several bugs that are still unsolved.

Chapter 6 first makes a comparison between the baseline platform and the extended
platform regarding area increase and operating frequency. The new design primarily
increases the number of BRAMs and Lookup Table (LUT) resource by 21.3% and 14.5%
respectively. A much more significant cost is the decrease in operating frequency from
75 MHz down to 47 MHz. It might be possible to increase this if some more effort is
spent in locating and removing unnecessary critical paths. However, it might also be
inherent to the architectural choices made during the course of this project. The decision
to implement the CAMs in BRAMs and to implement a VIPT cache might have incurred
this cost.

Subsequently, the verification software described in Chapter 5 was used to evaluate
the performance of the MMU in several static configurations. The effects of varying the
TLB size and page sizes on the number of TLB misses was measured. It was shown that
increasing these parameters can significantly reduce the number of TLB misses. At the
same time these measurements have shown the positive effect of the data TLB coalescing
mechanism described in Section 4.7.1.

In the last section of this chapter, two scenarios were explored to measure the perfor-
mance of the address translation hardware in relation to dynamic reconfiguration. In the
first experiment, the benefit of avoiding a cold start when expanding to a wider core was
measured. It was shown that the extent of this advantage depends on the page access
patter of the application. The second experiment measured the possible benefits of the
TLB update direction mechanism described in Section 4.7.2. The results showed that a
modest advantage can be obtained if the transition period is chosen carefully.

7.2 Main Contributions

The problem statement of this thesis project was:

How to implement hardware support for virtual memory on the ρ-VEX platform?

To answer this question, the following three goals were established:

1. Designing and implementing memory translation hardware for the ρ-VEX platform.

2. Proving that the platform is able to support an OS which implements virtual
memory.

3. Measuring how the implementation performs in different static configurations and
dynamic reconfiguration scenarios

To reach the first goal, virtual memory hardware has been designed that is tailored to
the properties and requirements of the ρ-VEX platform. This hardware is encapsulated

78 CHAPTER 7. CONCLUSION

in an MMU component and is integrated with the rest of the system. It is designed to
require minimal modifications of the components that are already in place. The address
translation step is performed between the core and the cache, in a way that allows it
to be performed in parallel to the cache lookup. The MMU fully supports the dynamic
reconfigurable nature of the platform in an efficient way. Furthermore, the MMU extends
the statically configurable nature of the platform with several parameters. Besides these
necessities, the MMU implementation also features some unique optimizations related
to dynamic reconfiguration. A mechanism is implemented which allows the data TLBs
of all coupled lanes to be referenced when one of the lanes performs a data access. This
effectively scales the data TLB depth linearly with a cores issue-width. Additionally, it
is also possible to direct TLB updates to a specific issue-lane. This allows software to an-
ticipate on future reconfigurations. Furthermore, the fact that TLBs are tightly coupled
allows for several optimizations. All TLBs share a single Table Walker (TW), multiple
instruction TLBs can be updated simultaneously, and TLB coherency is automated and
transparent to the programmer.

To meet the second goal, software has been designed that emulates the core func-
tionality of an OS. This software runs multiple benchmarks in their own virtual address
space, thereby relying on the address translation hardware in the same way a real operat-
ing system would. The fact that the implemented hardware is able to run this emulation
proves that it could also support a real OS. However, there is still a bug in the system
that prevents successful execution of virtualized programs in some situations. The time
frame of this project does not allow more effort to be spent in solving this last issue.
This effectively means that the second goal has not been completely fulfilled.

To reach the third goal, first a static evaluation of the system was performed. This
evaluation consisted of running the same software on the platform with different config-
urations of the MMU. Comparing the results has shown that varying the configuration
parameters can reduce the latency overhead of the virtual memory hardware. At the
same time these experiments have shown the data TLB coalescing optimization can
significantly reduce data TLB misses for programs run on wider issue cores.

For the second part of the third goal, two dynamic reconfiguration scenarios have been
investigated. These measured the performance benefits of the two MMU optimizations
relating to dynamic reconfiguration, TLB coalescing and update direction. It was shown
that both can decrease the number of data TLB misses but they can also have a negative
effect in some situations.

The rest of this section lists the features of the implemented hardware, divided into
three categories. The first category holds the bare essential features of an MMU. These
correspond to the ones established in Section 2.6. The second category holds features
which increase the control the OS has over the hardware and allow for many optimiza-
tions. The final category hold features that are related to the unique properties of the
ρ-VEX system.

7.2. MAIN CONTRIBUTIONS 79

Minimal functional requirements of the MMU:

• Autonomous address translation of mappings stored in the TLB.

• Automatic checking of access rights (read/write and protection level) on every page
access.

• A TW unit to update the TLB when a miss occurs.

• A stall mechanism to halt the core and cache when a table walk is performed.

• A mechanism to issue a trap when a page fault or access violation occurs.

• A software interface to flush TLB entries.

• A mechanism to bypass the MMU for system initialization and kernel code that is
executed in physical address space.

Additional features implemented in the ρ-VEX MMU:

• TLB entries are tagged with Address Space Identifiers (ASIDs). This avoids flush-
ing TLBs on context switches.

• Support for large and global pages.

• Fine grained flushing control.

• Pages can be marked as non-cachable.

• PT bits for accessed and dirty, which are automatically maintained by the MMU.

• Transparent TLB coherence maintenance.

• Maskable write-to-clean trap. This allows implementing copy-on-write schemes.

ρ-VEX-specific features of the MMU:

• A large number of parameters to statically configure the MMU.

– An MMU enable switch.

– TLB depth.

– page size.

– large page size.

– ASID bit-width.

• Support for run-time reconfiguration.

• Data TLB coalescing when merging cores.

• TLB update direction specifiable by software.

80 CHAPTER 7. CONCLUSION

7.3 Additional Work

In the course of this project some time has been spent on additional work related to the
ρ-VEX processor. This side project eventually resulted in publication of a paper at the
Reconfig 2015 conference. This paper presents an idea which allows more efficient use of
the register file. The ρ-VEX’s register file is implemented using BRAM resources. These
allow to store up to 18 KiB of data, while the register file only uses 256 32-bit entries. The
paper discusses a method that allows some of the remaining space to be used to support
multiple hardware contexts in the processor. This allows hardware task switching for
a number of processes. These are much faster than software context switches, which
involve spilling registers to the stack. Writing this paper was done in collaboration with
multiple other students. This paper can be found in Appendix A.

7.4 Future Work

The addition of virtual memory hardware is primarily a step towards running a
full-fledged version of Linux on the ρ-VEX platform. On a shorter term, there are still
some bugs in the hardware that need to be sorted out. Furthermore, there are also some
design choices which were taken during the course of this project which might have to
be revised. These relate to the drop in operating frequency that occurred because of the
addition of the new hardware. Some time has already been spent on eliminating some
unnecessary long paths which has resulted in some increase in operating frequency. It
might be possible to get the current implementation to a satisfying performance level if
more effort spent on this. Finally there are also some recommendations for parts of the
ρ-VEX, which are indirectly related to the MMU.

Future work relating to the MMU:

• Locating and solving the bug that sometimes surfaces when running software in
virtual address mode on the FPGA. In Section 5.3 the circumstances and possible
causes of this bug were discussed. Some effort has already been spent in solving
the issue. Unfortunately the time frame of this project does not allow to complete
this effort.

• Examination of the timing reports to remove any remaining unnecessary long paths.

• Implementing the TLBs CAM in slice resources instead of BRAMs to possible
decrease routing delays.

• If the above options fail, implementing a PIPT cache. This means moving the TLB
upstream in the memory hierarchy, thereby increasing the length of the pipeline.

Future work relating to other parts of the ρ-VEX:

• A Linux port which implements virtual memory. The availability of an OS would
allow to implement a software layer which can control the dynamic reconfiguration

7.4. FUTURE WORK 81

of the ρ-VEX to adapt to different tasks. This software layer could base its deci-
sion on compiler directives combined with performance counters in the hardware.
These possibilities have already been proposed in [36]. The ρ-VEX platform now
features a cache and MMU which both support dynamic reconfiguration and offer
opportunities for additional optimization. These additions offer more variables for
the control layer to take into account. It would be interesting to measure the ef-
fects the cache and virtual memory hardware on real applications where dynamic
reconfiguration is controlled by the OS.

• The TLB update direction mechanism described in Section 4.7.2 and evaluated in
Section 6.3.3 has not shown spectacular results. There is already work in progress
within the Computer Engineering (CE) group which focusses on a similar system
inside the cache. These two mechanism could be combined, possibly leading to
more significant performance gains.

• In section 3.5 it was explained that the maximal size restriction of a VIPT cache
can be extended by increasing the set associativity of the cache. If the cache blocks
are combined as sets when lanes are coupled, this would allow each block to be
sized to the page size. In the current implementation, the sets are combined to a
direct-mapped cache. This means that the size of the entire cache is limited to the
page size. This modification of the cache would allow a four-fold increase in the
maximal cache size for an 8-issue ρ-VEX.

• When FPGA technology allows combining multiple ρ-VEXes on an FPGA, the
technique discussed in 3.4.4 could be implemented to support easy level 1 VIVT
caches. While this requires a second level of cache to be implemented, this archi-
tecture is the most favourable from the comparison performed in

82 CHAPTER 7. CONCLUSION

Bibliography

[1] M. Cekleov and M. Dubois, “Virtual-address caches. part 2. multiprocessor issues,”
Micro, IEEE, vol. 17, no. 6, pp. 69–74, Nov 1997.

[2] R. Bryant and D. Hallaron, OComputer Systems: A Programmer’s Perspective 2nd
Edition. Pearson, 2010.

[3] S. Wong, T. van As, and G. Brown, “r-vex: A reconfigurable and extensible softcore
vliw processor,” in Proc. International Conference on Field-Programmable Technol-
ogy, Taipei, Taiwan, Dec 2008.

[4] S. Vassiliadis, S. Wong, G. Gaydadjiev, K. Bertels, G. Kuzmanov, and E. Panainte,
“The molen polymorphic processor,” Computers, IEEE Transactions on, vol. 53,
no. 11, pp. 1363–1375, Nov 2004.

[5] H. Wong, V. Betz, and J. Rose, “Comparing fpga vs. custom cmos and the
impact on processor microarchitecture,” in Proceedings of the 19th ACM/SIGDA
International Symposium on Field Programmable Gate Arrays, ser. FPGA
’11. New York, NY, USA: ACM, 2011, pp. 5–14. [Online]. Available:
http://doi.acm.org/10.1145/1950413.1950419

[6] Maheshwari and Smid, Introduction to Theory of Computation. Ottowa, Canada:
Carleton University, 2014.

[7] C. Iseli and E. Sanchez, “Spyder: a reconfigurable vliw processor using fpgas,” in
FPGAs for Custom Computing Machines, 1993. Proceedings. IEEE Workshop on,
Apr 1993, pp. 17–24.

[8] A. K. Jones, R. Hoare, D. Kusic, J. Fazekas, and J. Foster, “An fpga-based
vliw processor with custom hardware execution,” in Proceedings of the 2005
ACM/SIGDA 13th International Symposium on Field-programmable Gate Arrays,
ser. FPGA ’05. New York, NY, USA: ACM, 2005, pp. 107–117. [Online].
Available: http://doi.acm.org/10.1145/1046192.1046207

[9] A. Lodi, M. Toma, F. Campi, A. Cappelli, R. Canegallo, and R. Guerrieri, “A vliw
processor with reconfigurable instruction set for embedded applications,” Solid-State
Circuits, IEEE Journal of, vol. 38, no. 11, pp. 1876–1886, Nov 2003.

[10] V. Brost, F. Yang, and M. Paindavoine, “A modular vliw processor,” in Circuits
and Systems, 2007. ISCAS 2007. IEEE International Symposium on, May 2007, pp.
3968–3971.

[11] C. Gaisler, GRLIB IP Library Users Manual, ser. User Guides, November 2015.

[12] J. Fisher, P. Faraboschi, and C. Young, Embedded Computing. San Francisco, CA:
Morgan Kaufman, 2005.

83

http://doi.acm.org/10.1145/1950413.1950419
http://doi.acm.org/10.1145/1046192.1046207

84 BIBLIOGRAPHY

[13] P. Faraboschi, G. Brown, J. Fisher, G. Desoll, and F. Homewood, “Lx: a technology
platform for customizable vliw embedded processing,” in Computer Architecture,
2000. Proceedings of the 27th International Symposium on, June 2000, pp. 203–213.

[14] HP. Hewlett-packard laboratories. vex toolchain. [Online]. Available: http:
//www.hpl.hp.com/downloads/vex/

[15] F. Anjam, L. Carro, S. Wong, G. Nazar, and M. Rutzig, “Simultaneous reconfigura-
tion of issue-width and instruction cache for a vliw processor,” in Proc. International
Conference on Embedded Computer Systems: Architecture Modeling and Simulation,
Samos, Greece, July 2012.

[16] A. Brandon and S. Wong, “Support for dynamic issue width in vliw processors
using generic binaries,” in Proc. Design, Automation & Test in Europe Conference
& Exhibition, Grenoble, France, March 2013, pp. 827 – 832.

[17] Silberschatz, Galvin, and Gagne, Operating System Concepts 8th Edition. John
Wiley and Sons, Inc., 2009.

[18] STMicroelectrics, ST231 Core and Instruction Set Architecture Manual, ser. ST200
VLIW Series, March 2004.

[19] W. A. Wulf and S. A. McKee, “Hitting the memory wall: Implications of the
obvious,” SIGARCH Comput. Archit. News, vol. 23, no. 1, pp. 20–24, Mar 1995.
[Online]. Available: http://doi.acm.org/10.1145/216585.216588

[20] D. Patterson and J. Hennessy, Computer Architecture: A Quantitative Approach
5th Edition. Morgan Kaufmann, 2012.

[21] M. Cekleov and M. Dubois, “Virtual-address caches. part 1: Problems and solutions
in uniprocessors,” Micro, IEEE, vol. 17, no. 5, pp. 64–71, Sep 1997.

[22] C. Villavieja, V. Karakostas, L. Vilanova, Y. Etsion, A. Ramirez, A. Mendelson,
N. Navarro, A. Cristal, and O. Unsal, “Didi: Mitigating the performance impact of
tlb shootdowns using a shared tlb directory,” in Parallel Architectures and Compila-
tion Techniques (PACT), 2011 International Conference on, Oct 2011, pp. 340–349.

[23] D. Black, R. Rashid, D. Golub, and C. Hill, “Translation lookaside buffer
consistency: A software approach,” SIGARCH Comput. Archit. News, vol. 17, no. 2,
pp. 113–122, apr 1989. [Online]. Available: http://doi.acm.org/10.1145/68182.68193

[24] B. Jacob and T. Mudge, “Virtual memory: Issues of implementation,”
Computer, vol. 31, no. 6, pp. 33–43, jun 1998. [Online]. Available: http:
//dx.doi.org/10.1109/2.683005

[25] D. Bovet and M. Cesati, Understanding the Linux Kernel, 3rd Edition. O’Reilly,
2005.

[26] J. R. Goodman, “Coherency for multiprocessor virtual address caches,” SIGPLAN
Not., vol. 22, no. 10, pp. 72–81, oct 1987.

http://www.hpl.hp.com/downloads/vex/
http://www.hpl.hp.com/downloads/vex/
http://doi.acm.org/10.1145/216585.216588
http://doi.acm.org/10.1145/68182.68193
http://dx.doi.org/10.1109/2.683005
http://dx.doi.org/10.1109/2.683005

BIBLIOGRAPHY 85

[27] M. Chekleov, M. Dubois, J. Wang, and F. Briggs, “Virtual-address caches,” Los
Angeles, California, Tech. Rep., 1990.

[28] W.-H. Wang, J.-L. Baer, and H. Levy, “Organization and performance of a two-
level virtual-real cache hierarchy,” in Computer Architecture, 1989. The 16th Annual
International Symposium on, May 1989, pp. 140–148.

[29] ARM. Page colouring on armv6 (and a bit on armv7). [Online]. Avail-
able: https://web.archive.org/web/20160201144045/https://community.arm.com/
groups/processors/blog/2012/05/14/page-colouring-on-armv6-and-a-bit-on-armv7

[30] P. Weisberg and Y. Wiseman, “Using 4kb page size for virtual memory is obsolete,”
in Information Reuse Integration, 2009. IRI ’09. IEEE International Conference
on, Aug 2009, pp. 262–265.

[31] B. Jacob and T. Mudge, “Virtual memory in contemporary microprocessors,” Micro,
IEEE, vol. 18, no. 4, pp. 60–75, Jul 1998.

[32] Xilinx, ML605 Hardware User Guide, ser. User Guides UG534, October 2012.

[33] K. McLaughlin, N. O’Connor, and S. Sezer, “Exploring cam design for network
processing using fpga technology,” in Telecommunications, 2006. AICT-ICIW ’06.
International Conference on Internet and Web Applications and Services/Advanced
International Conference on, Feb 2006, pp. 84–84.

[34] K. Locke, Parameterizable Content-Addressable Memory, ser. Application Note
XAPP1151, March 2011.

[35] J. van Straten, r-VEX reference manual, December 2015.

[36] J. Hoozemans, “Porting linux to the rvex reconfigurable vliw softcore,” Master’s
thesis, TU Delft, Delft, 2014.

https://web.archive.org/web/20160201144045/https://community.arm.com/groups/processors/blog/2012/05/14/page-colouring-on-armv6-and-a-bit-on-armv7
https://web.archive.org/web/20160201144045/https://community.arm.com/groups/processors/blog/2012/05/14/page-colouring-on-armv6-and-a-bit-on-armv7

86 BIBLIOGRAPHY

Reconfig 2015 Paper A

87

978-1-4673-9406-2/15/$31.00 c©2015 IEEE

Multiple Contexts in a Multi-ported VLIW Register
File Implementation

Joost Hoozemans, Jens Johansen, Jeroen van Straten, Anthony Brandon, Stephan Wong

Computer Engineering Lab, Delft University of Technology, The Netherlands
Email:{j.j.hoozemans, a.a.c.brandon, j.s.s.m.wong}@tudelft.nl

{j.johansen, j.vanstraten}@student.tudelft.nl

Abstract—The register file is an expensive component in
the design of any processor, especially, when considering the
additional ports that are needed to support multiple datapaths
within a wide-issue VLIW processor. In a recent work, these
additional resources were used to dynamically reconfigure the
register file to support a dynamically reconfigurable VLIW core.
The design can be perceived as a single 8-issue, two 4-issue, or
four 2-issue VLIW cores. Consequently, the multi-ported design
can operate in different modes, namely as one, two, or four
register files, respectively, corresponding to the active number of
cores. The implementation of the register file design on FPGAs
using Block RAMs still results in unused resources due to the
coarseness of the Block RAMs.

In this paper, we propose to re-purpose these unused BRAM
resources to additionally support multiple contexts next to earlier-
mentioned modes. In this manner, the 8-issue, 4-issue, and 2-
issue cores have access to 4, 2, and 1 contexts, respectively.
Consequently, we can avoid saving and restoring of the task states
in a multi-task environment, turning context switching from a
traditionally time-consuming event to an almost instantaneous
event. The advantage of this is the reduction of interrupt latency
and task switching latency, which are important in real-time and
embedded systems.

Our results show that our technique can improve interrupt
latency by a factor of 17.4× compared to using a software register
spill routine, depending on the behavior of the memory system.
Likewise, the task switching time can be improved by 6.7×.

I. INTRODUCTION

The ρ-VEX processor [1] is a dynamically reconfigurable
VLIW processor that can adapt its organization to the require-
ments of different workloads. One of its most important run-
time parameters is the issue-width that allows for adaptation
towards the ILP of the task(s) at hand. The design can be
configured as a single 8-way (1× 8-way), two 4-ways (2× 4-
way), four 2-way (4 × 2-way) VLIW processor core(s), or
combinations of those: e.g., two 2-ways and one 4-way. This
capability requires the design of an extensive register file to
support these different modes. In the worst case, the register
file must provide:

• 8 write ports and 16 read ports when running in the 1×8-
way mode

• 4 architecturally separate register files when running in
the 4× 2-way mode

This work has been supported by the Almarvi European Artemis project
nr. 621439.

To design a register file that satisfies these requirements we
use techniques such as Block RAM (BRAM) duplication and
a Live Value Table (LVT), which we will discuss in Section II.

A major drawback of the current design is the large resource
utilization. The BRAMs used to implement the register file on
the FPGA need to be duplicated multiple times to provide the
necessary amount of read and write ports. Every BRAM has a
capacity of 512 32-bit words (2KiB); however, the architecture
only requires 64 32-bit registers. Because of this, the resulting
design has an enormous storage capacity of which at most an
eighth is used by the processor in any particular configuration.

The design presented in this paper aims to convert the
drawback of the high BRAM usage of the register file for
wide-issue VLIW softcore processors into an advantage by
using the overcapacity to store different execution contexts.
The actual utilization of the BRAM storage capacity will in-
crease from 1

8 to 1
2 . Support for multiple contexts in hardware

relieves the core from having to spill and restore its entire
register file contents to and from memory in the event of a
task switch or interrupt. In a multi-tasking environment, this
concept changes task switches, which are traditionally very
time-consuming, into a virtually instantaneous event. Faster
context switching has advantages in numerous computing
scenarios, as it will increase responsiveness for interactive
workloads and improve interrupt latency and task switching
speeds in real-time systems. In the following, we illustrate
several cases in which our work can improve performance:

• Frequently used threads: Kernel threads, like schedulers,
must be frequently executed. In a traditional core im-
plementation, timers interrupt the core and trigger con-
text switching in order to execute such threads. In our
work, these threads can be maintained within the core
and thereby remove the need for context switching. For
example, an application is executing in the 8-issue mode
using 1 out of 4 contexts. When the scheduler needs to
execute, the current thread can be scheduled to run on a
4-issue core - this mode switch only takes several cycles
when using generic binaries [2]. In the remaining 4-issue
core, the execution of the scheduler can be resumed by
using its own context that remained “dormant” within the
core.

• Dynamic switching of execution by different cores: When
threads require more resources, e.g., when their ILP

increases, our processor design allows for it to claim
additional datapaths to execute the code more efficiently.
This does mean that another thread must be stalled for
a while. However, in our case, the context of the second
thread does not need to be saved into the memory and can
remain within the core until it is resumed. In the latter,
another context switching operation is saved.

• Context-cycling after cache misses: When our processor
is running in the 8-issue (4-issue) mode, it can have
up 4 (2) contexts stored within each core. This means
that when one thread is encountering a cache miss, thus
execution is stalled, the core can easily switch to another
thread (context) and continue execution, i.e., Switch-on-
Event Multi-Threading SoEMT.

• Embedded real-time systems with multiple tasks that
require stringent real-time constraints (e.g., control loops
with sensors and actuators). A single core can process
more events using multiple contexts [3]. Therefore, a
softcore can be used as microcontroller on an FPGA
which would save the designer from having to design
hardware circuits to handle some events or having to
resort to a multi-core system where distinct events are
handled by a dedicated core.

The register file of our ρ-VEX is a complex topic, as it is
also instrumental in supporting the core’s dynamic reconfig-
urability [4]. We limit the scope of this paper to evaluating the
benefits from multiple hardware contexts. It must therefore be
noted that the costs of this design (see Table I) are paid not
only for multiple contexts, but also to support the dynamic
reconfigurability. Our approach in this paper gives us a 17.4×
reduction in interrupt latency and 6.7× reduction in context
switching time.

II. BACKGROUND

The multi-ported register file is a challenging component in
the design of softcore VLIW processors. Wide-issue VLIW
processors like the ρ-VEX need register files with a large
number of read and write ports. The VEX instruction set
architecture (ISA) supports operations that use two source
registers and one destination register. Because of this, the
number of write ports required is equal to the issue-width,
and the number of read ports is equal to twice the issue-
width. Creating such complex register files using FPGA LUT
resources is very expensive and scales very poorly with the
number of ports. The reconfigurable ρ-VEX design and the
implementation of its multi-ported register file are introduced
in [5]. Moreover, in [6], the idea of using a Live Value Table
(LVT) is discussed that enables the use of banked memories
with duplication to create multi-ported BRAM memories. The
ideas presented in this paper are built upon a register file
design that is implemented using this technique. We will
discuss the concepts and challenges briefly in this section.

Creating RAM memories that have more read ports is
straightforward and achieved by duplicating the BRAM and
writing data into each block simultaneously. In this way, each
BRAM contains the same data, and their read ports can be

used independently of each other. Increasing the number of
write ports, however, is more difficult. Several solutions exist
in literature. The simplest solution is to divide the register
file into banks, each connected to one of the write ports [7].
This solution restricts the range of registers each write port
can write to and thus reduces the freedom the compiler has
to schedule instructions. Another solution introduced in [8]
increases the size of each bank to the original register file
size and renames the registers in between the compiler and
assembler. This solution enables a banked design with the
same scheduling freedom as an actual multi-ported register
file but utilizes a multiple of the number of registers. Note
that this technique does not necessarily require more BRAMs
since their size is a lot larger than the 64 registers specified
in the VEX ISA. It does, however, increase the number of
bits required to specify the source and destination registers in
instructions.

The register file used in the ρ-VEX uses the technique
introduced by [6]. This scheme also duplicates the register file
for each write port. However, instead of uniquely naming the
registers in each bank, a Live Value Table (LVT) keeps track
of which bank holds the most recent value of each register. It
uses this information to multiplex the right bank to the read
ports, as shown in Figure 1. The LVT needs to be implemented
as a multi-ported LUT based RAM because it still needs one
write port per register file write port. However, since it only
needs to hold a bank address, it is much narrower than the
original register file that the scheme seeks to replace. While
this technique enables the register file to be implemented
mostly with BRAMs instead of LUTs, it still scales poorly
with the number of ports. The number of BRAMs required is
equal to the product of the number of read and write ports. The
depth of the LVT scales linearly with the number of registers
in the register file while the width scales logarithmically with
the number of write ports. The number of ports required for
the LVT is equal to the number of ports on the register file.

III. RELATED WORK

In [9] the authors analyzed the high requirements that wide-
issue VLIW processors pose on the register file. They discuss
hypothetical FPGA primitives similar to existing BRAMs but
featuring many more read and write ports. These primitives
do not exist in current FPGAs, therefore, the use of large
BRAM or LUT-based structures is required to emulate this
behavior [6].

In [10], it is stated that “the context switch time is one of the
most significant overhead factors in any operating system” and
shows that high timer interrupt handling latency can impede
schedulability of real-time tasks. In [3], it is measured that
using a multi-threaded architecture with 4 register sets allows
an autonomous guided vehicle to run at a 28% higher velocity.
In [11], measurements were performed to quantify the interrupt
latency of several embedded Linux distributions running on a
Xilinx Microblaze.

There are numerous examples of processors which use
the concept of multiple register files to enhance the context

LVT
64

Entries
BRAM

MUX

Figure 1. Block diagram of register file implementation using multiple banks
of BRAMs. The green arrows indicate write ports, while the blue arrows
indicate read ports. The shaded area represents the portion of the BRAM
used for storing a single context.

switching time and interrupt latency in hardware. In [12],
comparisons are made (by means of simulations) between
increasing the number of cores and increasing the number of
register sets in terms of increasing performance for a parallel
workload. In [13], the MIPS architecture is extended by
duplicating the register file multiple times and adding special
instructions to switch between them when a context switch is
required. In [14], the authors propose a novel architecture,
which also supports holding multiple contexts in hardware
simultaneously, and extend it with a dedicated cache to hold
contexts to prevent spilling to main memory. Among other
things the effects of the additional contexts on interrupt latency
is investigated. Storing multiple contexts is also a requisite for
(Simultaneous) Multi-Threading (SMT) [15]. An example of a
VLIW processor with SMT support is the Itanium [16]. These
technologies target high-end ASIC processors while this work
targets the embedded (FPGA) domain.

The synthesizable ARPA-MT [17] and RTBlaze [18] proces-
sors also use SMT to improve schedulability and performance
for embedded real-time systems. However, all the resource
investments in this core are only used for SMT. The ARPA-
MT core has a single execution pipeline. The fetch and decode
circuits as well as the register file need to be duplicated for
each thread slot.

In contrast, the ρ-VEX uses the additional resources to
support: 1) a very wide VLIW to exploit ILP, 2) multiple
hardware contexts and 3) a multi-core configuration (in other
words, all contexts can be active and executing at the same
time). Therefore, it uses the additional resources in a more
efficient way compared to the previous work.

IV. IMPLEMENTATION

Figure 1 shows the implementation of a register file with
four write ports and eight read ports (4W×8R), using BRAMs
and an LVT. The 8W × 16R version would be 4 times as
large. The hatched area represents the part of the BRAM that
is actually used to store the 64 registers used by the ρ-VEX.
The figure shows that a large part of the BRAMs is unused.

LVT
256

Entries

0
1
2
3

0
1
2
3

0
1
2
3

0
1
2
3

0
1
2
3

0
1
2
3

0
1
2
3

0
1
2
3 0

1
2
3

0
1
2
3

0
1
2
3

0
1
2
3

0
1
2
3

0
1
2
3

0
1
2
3

0
1
2
3 0

1
2
3

0
1
2
3

0
1
2
3

0
1
2
3

0
1
2
3

0
1
2
3

0
1
2
3

0
1
2
3 0

1
2
3

0
1
2
3

0
1
2
3

0
1
2
3

0
1
2
3

0
1
2
3

0
1
2
3

0
1
2
3

MUX

Figure 2. Block diagram of register file implementation supporting multiple
contexts. Here the number of BRAMs is the same, but the LVT is larger.

Because the ρ-VEX can be configured as four independent
processors, it also needs four separate register files. However,
the total number of read and write ports is the same for one
large 8-issue processor or four separate 2-issue processors.
Because of this characteristic, the same multi-ported register
file can be used in each configuration. The number of registers,
however, needs to be quadrupled, for a total of 256 registers,
since each core needs a separate register file of 64 registers.
The BRAM resources on contemporary FPGA boards provide
more than sufficient storage capacity to accommodate this, so
there is no added cost in BRAM resources. However, the LVT
does need to increase in size, to keep track of the most recent
location of all 256 registers.

Figure 2 shows how the multiple contexts can be stored
in the previously unused space of the BRAMs. Creating four
separate register spaces is a necessary cost to enable the ρ-
VEX to be split into four separate processors. However, not
all of the register spaces are used when the core is configured
as a single 8-issue processor or two 4-issue processors. This
creates the opportunity to re-purpose these unused register
spaces as alternative register windows, which can be used
to store the register context of inactive processes. Since the
four register windows are implemented as a larger continuous
address space, the uppermost bits can be used to select one of
the four register windows.

The ρ-VEX utilizes more registers than just the 64 general
purpose registers. It also has the following registers, that must
be stored for a context switch:

1) A special 32-bit register used to store the return address
for a function call (the link register).

2) Eight 1-bit registers used for conditional branching.
3) The program counter.
4) Various control registers, used for example for interrupt

handling.
These registers cannot easily be stored in BRAMs, as the
control logic needs to be able to access all these registers at
once. Therefore, these registers are implemented in LUTs. To
support running as 4 × 2-issue processors, all these registers
need to be duplicated as well, and can thus be used as part of

task A
context

save

pipeline

!ush

context

restore
scheduler task B

task A scheduler task B

interrupt latency

context switching latency

interrupt latency

context switching latency

Software

Context Switching

Hardware

Context Switching

Figure 3. Context switching and interrupt latency definition.

the hardware contexts. Some additional hardware is required
to use these registers for context switching, as not every lane
would necessarily need access to all duplicates of the registers
for reconfiguration only, while this is necessary for context
switching. However, when this is done, the only registers
which need to be spilled and restored are those registers which
are used by the context switching routine, or scheduler itself.
Because the additional hardware cost is small, our context
switching design incorporates this feature.

A hardware context switch is not entirely free in terms of
cycles in the current ρ-VEX design. To avoid complicating
the forwarding logic, context switches are only possible when
the pipeline is empty. Because the ρ-VEX has a five stage
pipeline, five cycles are needed to flush the pipeline before a
context switch can occur. In addition, the context switches are
currently controlled by the dynamic reconfiguration controller,
which takes three additional cycles to decode and commit
a new configuration. Two of these are spent still executing
instructions in the old context.

V. EXPERIMENTAL SETUP

Our measurements are carried out using the ρ-VEX VLIW
softcore processor clocked at 37.5 MHz running on a
Xilinx ML605 development board, which incorporates an
XC6VLX240T Virtex 6 FPGA. We use a timer connected
to the interrupt request input of the processor to generate
interrupts at different rates to measure the impact of our
approach on the performance of the system.

We quantify the impact on performance by measuring two
different values, namely:

1) Interrupt Latency: The number of cycles elapsed be-
tween the moment an interrupt request is received by
the core, and the first instruction of the interrupt handler
being executed.

2) Context switching latency: The number of cycles elapsed
between the moment a context switch is requested (due
to an interrupt), and the first instruction being executed
in the new context.

Figure 3 shows what these latencies are made up of, namely:
pipeline flushing, saving context registers, running the inter-
rupt service routine (in our case the task scheduler), and finally
restoring the context registers. By using hardware contexts the

latency of saving and restoring registers can be eliminated.
We measured these quantities by creating a workload of
four programs. At every timer interrupt a scheduler selects a
different program to execute, and performs the context switch
to that program. The programs themselves have no impact on
the measurements, since they are purely dependent on the time
it takes to save and restore all context registers.

In order to measure the difference between hardware and
software context switching, we wrote a software and a hard-
ware context switching routine. The software version saves the
complete context to the stack of the currently running task,
stores the stack pointer to a predefined memory location, and
starts executing the interrupt handler. The interrupt handler
then calls the scheduler in order to schedule the next task. The
current stack pointer is then replaced with the stack pointer
of the new task. Next, the application context of the newly
selected task is restored from the stack, after which control is
handed back to the application. The hardware switch routine
does not need to save or restore all registers. Instead it only
has to do so for the registers used by the interrupt routine, in
this case the scheduler.

The scheduler utilizes a linked list in memory to determine
which task to switch to; each entry representing a task, with a
mapping to another task. When a task completes, the linked list
is rebuilt such that the context switching code does not switch
back to the completed task, and a context switch is requested
immediately using a software trap instruction. When the last
task completes, it signals completion to the platform.

Because cache behavior will impact the latencies for saving
and restoring the contexts we perform the measurements for
different memory access latencies. We measure using latencies
from 0 (single cycle memory access) to 30 cycle memory
access on cache miss. The cache itself consists of a separate
instruction and data cache, respectively 32KiB and 8KiB in
size. The size has intentionally been kept small, because the
programs under test had to be small as well for the entire
memory to fit on the FPGA; it is assumed that, under normal
circumstances, larger caches will be used, but the running
programs will also use wider regions of more memory. Both
caches have single-cycle hit latency for reads. The data cache
has a two-cycle latency for writes for both hits and misses, as
long as one of the four write buffers is vacant.

To evaluate the context switching overhead in multi-process
time-sharing systems, overall performance of the multi-task
system is tested on hardware using the cached system. The
timer is used to generate an interrupt at a fixed frequency, often
referred to as the system “tick,” in which a context switch is
performed. Clearly, the context switching overhead is directly
related to the frequency of the system tick [10]. The frequency
of the tick is usually in the order of 50 to 1000 Hz. A lower
frequency will lead to lower switching overhead, but higher
frequencies will result in a more responsive system. Systems
that require more responsiveness will therefore have a higher
tick frequency. For example, the Linux kernel uses a system
tick of 1000 Hz for desktop systems, but this can be reduced
to 100 Hz for server systems to reduce overhead. On the other

Table I
RESOURCE USAGE OF REGISTER FILE WITH AND WITHOUT SUPPORT FOR

MULTIPLE CONTEXTS.

Register File
1 Context 4 Contexts Core Increase

over Core
Slice Registers 806 1392 8529 6.9%
Slice LUTs 10764 15591 35148 13.7%
RAMB18E1 128 128 147 0%
RAMB36E1 0 0 128 0%

hand, the Windows kernel uses 66 Hz. The frequency is varied
between tests to evaluate its effect. In addition, the system is
evaluated with varying bus latencies. The latencies used are
estimates of what the average latency would be for a real off-
chip memory system.

A cycle counter available within the ρ-VEX processor is
used to measure the time from system reset to the program
completion signal, which is given by the task switching
implementation when all tasks have completed. For each timer
and memory system configuration, both context switching
implementations are evaluated. Because all other factors are
kept constant, the difference in total execution time is only
dependent on the context switching overhead. The speedup
between the baseline and hardware context switching imple-
mentations is then determined to quantify this overhead.

VI. RESULTS

In Table I we show the increase in resource utilization of
the register file when adding support for four contexts. As
expected the number of BRAMs used does not increase. Only
the number of registers and LUTs increases, since these are
used to implement the LVT. While these increases seems
large, when compared to the total usage of the core they
are less significant. Additionally, note that this increase in
resources in the register file is required to support the dynamic
reconfigurability of the processor.

As we can observe in Table II, the interrupt latency is 87
cycles for software context switching. The interrupt latency
when using hardware contexts is only 5 cycles, solely due to
the pipeline flush performed by the trap handling logic. A full
context switch, i.e., the time between a tick interrupt request
and the execution of the first instruction in the new context,
takes 174 cycles using the software implementation, compared
to 26 cycles using the hardware contexts.

Table II
INTERRUPT AND CONTEXT SWITCHING LATENCY WITH SINGLE-CYCLE

MEMORIES IN CYCLES.

Software Hardware Reduction

Interrupt Latency 87 5 17.4×
Context Switch Latency 174 26 6.7×

In Table III, we can observe the results of the same
experiments run using a cached memory system, with a bus
latency of 20 cycles. We observe that the improvement due

1.0

1.1

1.2

1.3

0 250 500 750 1000 1250
Task Switching Frequency (Hz)

Sp
ee

du
p

Bus Latency

0

10

20

40

Figure 4. Speedup of the multi-task system due to the hardware context
switching implementation.

to the hardware context switching is greater in this system,
with the improvement in interrupt latency increasing from
17.4 to 23.5×, and the improvement of context switching time
increasing from 6.7 to 14.8×.

Table III
INTERRUPT AND CONTEXT SWITCHING LATENCY WITH CACHE AND 20

CYCLES BUS LATENCY IN CYCLES.

Software Hardware Reduction

Interrupt Latency 16798 713 23.5×
Context Switch Latency 31861 2148 14.8×

Figure 4 shows the speedup for different frequencies of the
timer tick parameterized for different memory latencies, as
measured on hardware using the cached system. It can be seen
that in the region of higher task switching frequencies the
difference between hardware and software context switching
can be quite substantial depending on the memory system. A
speedup of over 1.3× can be achieved for a bus latency of 40
cycles at a switching frequency of 1280 Hz.

VII. CONCLUSIONS

The concept of using additional register files to speed up
multi-threading performance has been applied in numerous
designs in the past. In this paper, we apply the concept to
an existing design, exploiting the overcapacity of the BRAMs
in the existing implementation of the multi-ported register
file and the additional logic required by the parameterized
reconfigurability of the ρ-VEX softcore. We have demon-
strated that the proposed design can decrease the interrupt
latency by a factor of over 20 times in a realistic environment.
Likewise, the total context switching time can be decreased by
a factor of over 10 times. In a simple multi-task system the
effect of this is apparent as the decrease in overhead results
in a speedup of 1.3× in the most extreme case evaluated.
For applications with few real-time requirements, where the

system tick frequency would be relatively low, the speedup is
negligible, as the task switching code would not be executed
as often. However, embedded real-time systems that need to
process large numbers of events will benefit most from the
improvements.

REFERENCES

[1] S. Wong and F. Anjam, “The Delft Reconfigurable VLIW Processor,”
in 17th International Conference on Advanced Computing and Commu-
nications, 12 2009, pp. 244–250.

[2] A. Brandon and S. Wong, “Support for dynamic issue width in VLIW
processors using generic binaries,” in Design, Automation Test in Europe
Conference Exhibition (DATE), 2013, March 2013, pp. 827–832.

[3] U. Brinkschulte, C. Krakowski, J. Kreuzinger, and T. Ungerer, “Interrupt
service threads-a new approach to handle multiple hard real-time events
on a multithreaded microcontroller,” RTss WIP sessions, Phoenix, pp.
11–15, 1999.

[4] F. Anjam, M. Nadeem, and S. Wong, “Targeting code diversity with
run-time adjustable issue-slots in a chip multiprocessor,” in Design,
Automation Test in Europe Conference Exhibition (DATE), 2011, March
2011, pp. 1–6.

[5] S. Wong, F. Anjam, and F. Nadeem, “Dynamically Reconfigurable
Register File for a Softcore VLIW Processor,” in Design, Automation
Test in Europe Conference Exhibition, March 2010, pp. 969–972.

[6] C. LaForest and J. Steffan, “Efficient Multi-ported Memories for FP-
GAs,” in Proceedings of the 18th Annual ACM/SIGDA International
Symposium on Field Programmable Gate Arrays, ser. FPGA ’10. ACM,
2010, pp. 41–50.

[7] M. Saghir and R. Naous, “A Configurable Multi-ported Register File
Architecture for Soft Processor Cores,” in Reconfigurable Computing:
Architectures, Tools and Applications, ser. Lecture Notes in Computer
Science, vol. 4419, 2007, pp. 14–25.

[8] F. Anjam, S. Wong, and F. Nadeem, “A Multiported Register File
with Register Renaming for Configurable Softcore VLIW Processors,”
in International Conference on Field-Programmable Technology (FPT),
2010, Dec 2010, pp. 403–408.

[9] M. Purnaprajna and P. Ienne, “Making Wide-issue VLIW Processors
Viable on FPGAs,” ACM Trans. Archit. Code Optim., vol. 8, no. 4, pp.
33:1–33:16, Jan. 2012.

[10] G. Buttazzo, Hard Real-time Computing Systems: Predictable Schedul-
ing Algorithms and Applications. Springer, 2011, vol. 24.

[11] A. Ronnholm, “Evaluation of Real-Time Operating Systems for Xilinx
MicroBlaze CPU,” Master’s thesis, Malardalens University, 6 2006.

[12] R. Thekkath and S. Eggers, “The Effectiveness of Multiple Hardware
Contexts,” SIGOPS Oper. Syst. Rev., vol. 28, no. 5, pp. 328–337, Nov.
1994.

[13] N. Rafla and D. Gauba, “Hardware implementation of context switching
for hard real-time operating systems,” in 2011 IEEE 54th International
Midwest Symposium on Circuits and Systems (MWSCAS), , Aug 2011,
pp. 1–4.

[14] K. Tanaka, “PRESTOR-1: a Processor Extending Multithreaded Ar-
chitecture,” in Innovative Architecture for Future Generation High-
Performance Processors and Systems, 2005, Jan 2005.

[15] D. M. Tullsen, S. J. Eggers, and H. M. Levy, “Simultaneous multithread-
ing: Maximizing on-chip parallelism,” in ACM SIGARCH Computer
Architecture News, vol. 23, no. 2. ACM, 1995, pp. 392–403.

[16] R. Riedlinger, R. Bhatia, L. Biro, B. Bowhill, E. Fetzer, P. Gronowski,
and T. Grutkowski, “A 32nm 3.1 billion transistor 12-wide-issue itanium
processor for mission-critical servers,” in Solid-State Circuits Conference
Digest of Technical Papers (ISSCC), 2011 IEEE International, Feb 2011,
pp. 84–86.

[17] A. Oliveira, L. Almeida, and A. de Brito Ferrari, “The arpa-mt embedded
smt processor and its rtos hardware accelerator,” Industrial Electronics,
IEEE Transactions on, vol. 58, no. 3, pp. 890–904, March 2011.

[18] T. P. Wijesinghe, “Design and implementation of a multithreaded
softcore processor with tightly coupled hardware real-time operating
system,” Master’s thesis, 2008. [Online]. Available: http://search.
proquest.com/docview/250936948?accountid=27026

	List of Figures
	List of Tables
	List of Acronyms
	Acknowledgements
	Introduction
	Context
	Problem Statement, Project Goals, and Methodology
	Overview

	Background
	FPGAs
	Softcore Processors
	VLIW Processors
	The -VEX Reconfigurable VLIW Processor
	The VEX Instruction Set Architecture
	Static Configuration
	Dynamic Reconfiguration
	Reconfigurable Cache

	Memory Management
	Virtual Address Spaces
	Page Tables
	Hardware Support
	Operating System Support
	Caches and Virtual Memory
	Memory Management in Multiprocessor Systems

	Minimal functional requirements of an MMU
	Conclusion

	Architecture
	Address Translation Hardware
	Caches
	Memory Management Terminology
	Virtual Memory Hierarchies
	PIPT Caches
	VIVT Caches
	VIVT Cache with Dual Directory
	VIVT Multilevel Cache
	VIPT Caches

	Memory Hierarchy selection
	TLB Management
	Optimization Opportunities
	MMU Support for Dynamic Reconfiguration
	Conclusion

	Hardware Implementation
	Implementation Platform
	Interface to the Processor and Cache
	Cache Modifications
	Translation Look-aside Buffer
	Context Accessible Memory
	TLB States
	Stale CAM Entries
	Large and Global Pages
	TLB Coherence

	Table Walk Hardware
	Design-time Configurability
	Run-time Reconfigurability
	Coalescing data TLBs
	TLB update direction

	Page Table Organization
	Page Table Entries

	Register Interface
	Conclusion

	Functional Verification
	Verification Software Design
	Verification Software Evaluation
	Implementation Bugs
	Conclusion

	Measurements
	Area utilization and Operating Frequency
	Static Configuration Evaluation
	Dynamic Reconfiguration Evaluation
	Synthetic Benchmarks
	Lane Expansion
	Lane Reduction

	Conclusion

	Conclusion
	Summary
	Main Contributions
	Additional Work
	Future Work

	Bibliography
	Reconfig 2015 Paper

