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2                                                                                                                                                        Chapter 1 

1.1 Rationale  

Naturally fractured reservoirs produce a significant portion of oil and gas globally (Saidi 1987). These 

reservoirs are recognized as “fractured” primarily if the fractures form an interconnected network (Fig. 

1.1), allowing flow over long distances exclusively through the fractures, without the need to pass 

through the rock matrix between the fractures. What makes naturally fractured reservoirs special is the 

high conductivity of the fracture network combined with much slower flow within the matrix, where oil 

resides. Fractured reservoirs containing a well-connected fracture network are the focus of this study. 

However, the rate of oil recovery from these reservoirs has been rather low. Therefore more-accurate 

reservoir simulation is required for efficient exploitation of naturally fractured reservoirs.  

 

Figure 1.1 Example of a fracture network outcrop (Bisdom 2016) .  

Geological information is required to generate reliable models for fractured-reservoir simulation. 

Reservoir simulation is one of the most practical methods for studying flow problems. The discrete 

fracture model (DFM) is one approach for simulating flow in fractured reservoirs. DFM accounts 

explicitly for the effect of individual fractures on fluid flow (Geiger et al. 2004; Karimi-Fard et al. 2004; 

Karimi-Fard, Firoozabadi 2003; Kim, Deo 2000; Li, Lee 2008; Li et al. 2009; Matthäi et al. 2007). 

Previously, the usage of DFM was restricted by the limited information from the subsurface, and the 

computational effort required to take into account every single fracture. However, nowadays, 

computing capabilities have increased dramatically, which enables DFM simulation in some cases. 

Nevertheless, DFM is still computationally too expensive for field-scale reservoir simulation. Also, even if 

detailed geological information is given, it is difficult to predict the flow pattern through the fracture 

networks; some simplification is needed.  

Field-scale simulation of a reservoir with a well-connected fracture network is often done with dual-

porosity/dual-permeability methods (DP/DK) (Moinfar et al. 2011). In the DP/DK concept, the fracture 

and the matrix systems are treated as separate domains; the interconnected fractures serve as fluid 

paths between the injection and production wells, while the matrix provides fluid storage for nearby 

fractures (Fig. 1.2). Limited fluid flow between the matrix blocks is allowed in dual-permeability models 

(Gilman, Kazemi 1988; Hill, Thomas 1985). The flow between the fracture and the matrix domains is 

represented by an exchange function which is characterized by a shape factor (Barenblatt et al. 1960; 

Kazemi et al. 1976; Warren, Root 1963). Although the dual-porosity/dual-permeability models are 

much-simplified characterizations of naturally fractured reservoirs, for reservoirs with many fractures 

and a very high degree of interconnection, they are still more feasible than the DFM methods.  
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Figure 1.2 Dual-porosity representation of a fractured formation (Lemonnier, Bourbiaux 2010). The dual-

porosity/dual-permeability concept can be applied to matrix columns, i.e. without horizontal fractures. 

With the DP/DK approach, average properties are assigned to each grid block, such as porosity, 

permeability, matrix-fracture interaction parameters (typical fracture spacing or shape factor), etc. 

(Dershowitz et al. 2000). Therefore, the discrete fracture network considered to generate the DP/DK 

model parameters is crucial. However, if the fracture network shows non-uniform flow, the 

characteristic fracture spacing or the shape factor can be ambiguous.  

Naturally fractured reservoirs, like all reservoirs, are exploited in two stages: primary recovery and 

secondary recovery. The oil-recovery mechanisms are different in these two processes. During primary 

production, fluid is produced mainly by fluid expansion. The pressure drops rapidly in fractures 

connected to the production well because of their high permeability while, in contrast, the matrix 

remains at high pressure. This in turn creates a pressure difference between the fracture and the 

adjacent matrix block and leads to flow of oil from the matrix to the fracture. In this scenario, as long as 

the fractures are much more conductive than the matrix, one might expect that all the connected 

fractures are conductive enough to bring oil from the matrix to the production wells. In secondary 

recovery (or an enhanced oil recovery (EOR) process), the injected water or EOR agent from an injection 

well reaches the matrix through the fractures, while the oil residing in the matrix flows into the adjacent 

fractures and then to a production well. Since the fractures have much higher permeability than the 

matrix, the injected water or EOR agent invades the fractures much faster than the matrix. The injected 

agent rapidly flows through the fracture network and surrounds a matrix block. If the matrix block has 

water-wet characteristics, water imbibes into the matrix block because of capillary pressure. Oil residing 

in the matrix block in turn flows into adjacent fractures by co-current imbibition or counter-current 

imbibition (Ramirez et al. 2009). Oil recovery, of course, requires that fractures carry injected agent to 

the adjacent matrix. The size of matrix blocks formed by the fractures plays a significant role in fluid 

exchange between the matrix and the fractures. If fractures do not carry a significant portion of injected 

water or EOR agent, it is questionable whether they should be included in defining the size of matrix 

blocks.  

Shape factor is the heart of dual-porosity/dual-permeability flow modeling. It characterizes the 

geometry and boundary conditions of the matrix blocks. Different recovery mechanisms in primary and 

secondary production suggest that the relevant fracture spacing or the shape factor for the dual-

porosity/dual-permeability simulation should depend on the process involved. Specifically, it should be 

different for primary and for secondary or tertiary recovery. 

 

 

 

 



4                                                                                                                                                        Chapter 1 

1.2 Thesis Outline 

This work is aimed at providing further insights into the implications of non-uniform flow in the fracture 

networks to the dual-porosity/dual-permeability simulation of the fractured reservoirs, and the roles 

that fractures play in different recovery processes.  

This dissertation contains work from several articles which are either already published or are currently 

under review for publication in peer-reviewed journals. It proceeds as follows. 

This introduction serves as chapter 1.   

Chapter 2 examines the non-uniform flow in well-connected fracture networks. For simplicity in this 

initial study, we examine flow in a two-dimensional fractured reservoir, in which the matrix is assumed 

to be impermeable; fluid can only flow through the connected fracture networks (Fig. 1.3). Two fracture 

sets that are nearly orthogonal to each other are assumed, with almost equal numbers of fractures in 

the two sets. The fracture length follows a power-law distribution, and the fracture aperture is 

described by either a power-law distribution or a log-normal distribution; these are broadly recognized 

as acceptable representations of the fracture length (de Dreuzy et al. 2001a, b; Nicol et al. 1996; Odling 

1997) and the aperture distribution (Barton et al. 1989; Belfield, Sovich 1994; Cacas et al. 1990a; Cacas 

et al. 1990b; Dverstorp, Andersson 1989; Long, Billaux 1987; Snow 1970; Tsang et al. 1996; Wong et al. 

1989) for real fractured formations, respectively. However, we take no explicit account of the effect of 

geo-mechanical stresses on the fracture length and aperture distributions. Horizontal fractures are not 

considered in this study.  

The results show that even in a well-connected fracture network, far above the percolation threshold, 

flow may be so unequally distributed that most of the network can be excluded without significantly 

reducing the effective permeability of the fracture network. Even a well-connected fracture network can 

behave like a much-sparser network when the aperture distribution is broad enough. We determine 

how broad the aperture distribution must be to behave in this way. The work presented in chapter 2 is 

published in Petroleum Science (Gong, Rossen 2017). 

 

 

Figure 1.3 Example of a well-connected fracture network studied in this work. 

Chapter 3 discusses the implications of non-uniform flow in a fracture network for the shape factor for 

the dual-porosity/dual-permeability simulation. This is a follow-up study to chapter 2; the models used 

here are the same as the ones adopted in chapter 2. We focus on the influence on the characteristic 
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matrix-block size caused by eliminating unimportant fractures which carry little flow. We also check the 

influence of aperture distribution (exponent α in a power-law distribution and standard deviation σ in a 

log-normal distribution) on the characteristic sizes of matrix blocks formed by the dominant sub-

network formed by the fractures that carry most of the injected fluid. The characteristic matrix-block 

radius and length are adopted to represent the characteristic matrix-block size for the matrix blocks of 

varying shapes and sizes. The equivalent matrix-block size is employed to represent the average value of 

the resulting distribution of the matrix block sizes. This work is published in Fuel (Gong, Rossen 2016).  

The results presented in chapters 2 and 3 suggest that the characteristic fracture spacing for the dual-

porosity/dual-permeability simulation of waterflood or EOR in a naturally fractured reservoir should 

account not for all fractures but only the relatively small number of fractures carrying almost all the 

injected water or EOR agent. In contrast, in primary production, even a relatively small fracture 

represents an effective path for oil to flow to a production well. This distinction suggests that the "shape 

factor" in the dual-porosity/dual-permeability reservoir simulation and the repeating unit in 

homogenization should depend on the process involved. Specifically, it should be different for primary 

and secondary or tertiary recovery. 

Chapter 4 tests this hypothesis in a simple representation of a fractured region, which can be seen as a 

grid block in a dual-porosity/dual-permeability model with a non-uniform distribution of fracture-flow 

conductivities in primary production or a waterflood process. In Particular, we represent a region 

bounded by primary fractures and penetrated by secondary fractures (also by tertiary fractures in some 

cases). The primary fractures represent the dominant sub-network which carries most of the injected 

agent in chapters 2 and 3, and the secondary and, in some cases, tertiary fractures represent the 

remaining fractures. 

 We compare oil production, flow patterns in the matrix, and the pattern of oil recovery with and 

without the "secondary" fractures that carry only a small portion of the injected fluid. 

The results show that the role of the secondary fractures depends on a dimensionless ratio of the 

characteristic times for the matrix and the fracture flow (Peclet number), and the ratio of the flow 

carried by different fractures. In primary production, for a large Peclet number, treating all fractures 

equally is a better approximation than excluding the secondary fractures; the shape factor should reflect 

both the primary and the secondary fractures. For a sufficiently small Peclet number, it is more accurate 

to exclude the secondary fractures. For waterflood or EOR, in most of the cases examined, the 

appropriate shape factor or the repeating-unit size should reflect both the primary and the secondary 

fractures. If the secondary fractures are much narrower than the primary fractures, then it is more 

accurate to exclude them. Yet-narrower "tertiary fractures" are not always helpful for oil production, 

even if they are more permeable than the matrix. They can behave as capillary barriers to imbibition, 

reducing oil recovery. 

We present a new definition of Peclet number for primary and secondary production in fractured 

reservoirs that provides a more accurate predictor of the dominant recovery mechanisms in fractured 

reservoirs than the previously published definition. 

The work presented in this chapter has been submitted to Fuel.  

Finally, the main conclusions of this work are drawn in chapter 5, along with recommendations for 

further research on fractured reservoirs.   

Note from the author: This text includes published papers in reviewed journals and scientific 

conferences. Consequently, the reader may find similar texts and sentences in some parts of the thesis.



 

 

                                                                                    
The content described in this chapter is also published in : Gong, J. and Rossen, W.R. Modeling flow in naturally fractured reservoirs: effect of 

fracture aperture distribution on dominant sub-network for flow.  Pet Sci. 2017;14(1):138-54. doi:10.1007/s12182-016-0132-3. 
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2.1  Introduction 

A large number of oil and gas reservoirs across the world are naturally fractured, from which significant 

oil and gas are produced (Saidi 1987). Efficient exploitation of these reservoirs requires accurate 

reservoir simulation. Naturally fractured reservoirs, like all reservoirs, are exploited in two stages: 

primary recovery and secondary recovery (sometimes followed by tertiary recovery, i.e. enhanced oil 

recovery (EOR)), with different recovery mechanisms. During primary production, the reservoir is 

produced by fluid expansion. In secondary production and EOR, since the fractures are much more 

permeable than the matrix, the injected water or EOR agent flows rapidly through the fracture network 

and surrounds the matrix blocks. Oil recovery then depends on efficient delivery of water or EOR agent 

to the matrix through the fracture network. Dual-porosity/dual-permeability models are still the most 

widely used methods for field-scale fractured-reservoir simulation, as they address the dual-porosity 

nature of fractured reservoirs and are computationally cheaper, although they are much-simplified 

characterizations of naturally fractured reservoirs. To generate a dual-porosity/dual-permeability model, 

it is necessary to define average properties for each grid cell, such as porosity, permeability, matrix-

fracture interaction parameters (typical fracture spacing, matrix-block size or shape factor), etc. 

(Dershowitz et al. 2000). Therefore, the fracture network used to generate the dual-porosity model 

parameters is crucial. Homogenization and other modelling approaches likewise require one to 

designate a typical fracture spacing (Salimi 2010). The hierarchical fracture model (Lee et al. 2001) also 

requires that one define effective properties of the matrix blocks and fractures which are too small to be 

represented explicitly. 

This chapter is the first part of a three-part study showing that the appropriate characterization of a 

fractured reservoir differs with the recovery process. In this chapter, we show that even in a well-

connected fracture network, far above the percolation threshold, flow may be so unequally distributed 

that most of the network can be excluded without significantly reducing the effective permeability of 

the fracture network. The implications of this finding for characterization of naturally fractured 

reservoirs are the subject of parts two and three. Briefly, in primary production, any fracture much more 

permeable than the matrix provides a path for escape of fluids, while in waterflood or EOR, the fractures 

that carry most injected water or EOR agent play a dominant role. In this chapter we restrict our 

attention to flow of injected fluids, as a first step toward modeling recovery processes that depend on 

contact of injected fluids with matrix. 

Field studies and laboratory experiments show flow channeling in individual fractures and highly 

preferential flow paths in fracture networks (Neretnieks 1993; Neretnieks et al. 1982; Tsang, Neretnieks 

1998). Cacas et al (1990a; 1990b) proposed that a broad distribution of fracture conductivities is the 

main cause of the high degree of flow channeling. In order to understand these phenomena, many 

theoretical studies have been done. The separate influences of fracture-network connectivity 

distributions (Balberg et al. 1991; Berkowitz 1995; Berkowitz, Balberg 1993; Berkowitz, Scher 1997, 

1998; de Dreuzy et al. 2001a; Hestir, Long 1990; Robinson 1983, 1984) and fracture-conductivity 

distributions (Charlaix et al. 1987; Nordqvist et al. 1996; Tsang, Tsang 1987; Tsang et al. 1988) on flow 

channeling have been considered, and also the interplay of these two key factors (de Dreuzy et al. 

2001b; de Dreuzy et al. 2002; Margolin et al. 1998). Berkowitz (2002) further pointed out that even a 

well-connected fracture network can exhibit sparse preferential flow paths if the distribution of fracture 

conductivities is sufficiently broad. Katz and Thompson (1987) proposed a similar finding for pore 

networks. Although the “unimportant” fractures carry little flow, they still can be important to the 

connectivity and the preferential flow paths. It is not clear whether one can eliminate those 

“unimportant” fractures without significantly affecting the flow properties of the fracture network. Also, 

how broad the distribution of fracture conductivities must be to obtain this result is still an open 

question. 

We propose that, for the dual porosity/dual permeability simulation of a waterflooding process or EOR 

or in homogenization, for the purpose of modeling the fluid exchange between fractures and matrix 

blocks, only the sub-network which carries by far most of the injected water is of primary importance in 
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characterizing the reservoir. It is important to understand the factors that influence the sub-network. 

Since the effect of fracture connectivity on flow properties of fracture networks is well discussed, we 

focus here on the influence of fracture aperture (i.e. fracture conductivity) distribution. 

As the first step in our research, in this work, we systematically study the influence of the fracture 

aperture distribution on the dominant sub-network for flow. In this work, we define “the dominant sub-

network” as the sub-network obtained by eliminating a portion of fractures while retaining 90% of the 

original-network equivalent permeability. In other words, we are interested in how broad the aperture 

distribution must be that a well-connected fracture network can exhibit a sparse dominant sub-network 

with nearly the same permeability. The properties of the dominant sub-network are also examined. If 

the fracture network is poorly connected, i.e. near the percolation threshold, it is well established that 

only a small portion of the fractures connects the injection well and the production well. Here we focus 

on well-connected fracture networks. Since information on fracture apertures, especially in the 

subsurface, is limited, we test power-law distributions (from narrow to broad), log-normal distributions 

(from narrow to broad), and one case in which the aperture is proportional to the fracture length.  

This report is organized as follows: In Section 2, we introduce the numerical model and the research 

process of this study. In Section 3 we analyze the dominant sub-network. In Section 4, the possibility of 

identifying the dominant sub-network without doing flow simulations is discussed. Our conclusions are 

summarized in the last section. 

 

2.2 Numerical Model & Research Process 

2.2.1 Numerical Model 

For simplicity in this initial study, we examine flow in a quasi-two-dimensional fractured reservoir. We 

use the commercial fractured-reservoir simulator FracMan
TM

 (Dershowitz et al. 2011) to generate 

fracture networks. A 3D fracture network is generated in a 10 m × 10 m × 0.01 m region. The shape of 

each fracture is a rectangle. Each fracture is perpendicular to the plane along the flow direction and 

penetrates the top and bottom boundaries of the region. The Enhanced Baecher Model (Dershowitz, 

Einstein 1988) is employed to allocate the location of fractures. Two fracture sets which are nearly 

orthogonal to each other are assumed, with almost equal numbers of fractures in the two sets. 

Because of the uncertainties in data and the influence of cut-offs in measurements, in previous studies 

fracture-trace lengths have been described by exponential, log-normal and power-law distributions 

(Bour, Davy 1997; Rouleau, Gale 1985; Segall, Pollard 1983). Currently, a power-law distribution is 

assumed by many researchers to be the correct model for fracture length(de Dreuzy et al. 2001a, b; 

Nicol et al. 1996; Odling 1997), with exponent α ranging from 1.5 to 3.5. As proposed by de Dreuzy, if α 

is less than 2, flow is mostly channeled into longer fractures. On the other hand, if α is larger than 3, 

fracture networks are essentially made up of short fractures. For α in the range 2-3, both long and short 

fractures contribute to the flow. We set α = 2 which is a reasonable value in the real world. For this 

value of α, both short and long fractures make contribution to the flow through the fracture network. In 

this study, fracture length follows a power-law distribution (p(x)): 

                                                                                �(�) = 	 ��	

��
 (
��



 )� 							                                                                  (2.1) 

Where p(x) is the probability density function for a fracture of length x, α is the power law exponent 

(i.e., 2), x is the fracture length and xmin the lower bound on x, which we take to be 0.2 m. We truncate 

the length distribution on the upper end at 6 m; thus there are no extremely short or long fractures. In 

particular, the opposite sides of our region of interest cannot be connected by a single fracture. Since 

even the smallest fracture is much taller than the thickness of the region of interest (0.01 m), and there 

is no change of the model on Z direction, the 3D model is in essence a 2D fracture network. 
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For fracture apertures, we adopt two kinds of distribution which have been proposed in previous 

studies: power-law and log-normal. In each kind of distribution, a range of parameter values are 

examined. The aperture is randomly assigned to each fracture. In the case where the aperture is 

proportional to the fracture length, the fracture aperture follows the same power-law distribution as 

fracture length. The details of the aperture distribution are introduced below.  

To focus on the influence of fracture aperture distributions on the dominant sub-network, except for 

the aperture distribution, all the other parameters remain the same for all the cases tested in this study, 

including fracture length, orientation, etc.  

 

2.2.2 Flow Simulation Model 

We assume that a fracture can be approximated as the slit between a pair of smooth, parallel plates; 

thus the aperture of each fracture is uniform. The dependence of fracture permeability (k) on aperture 

(d) is defined as: k = d
2
/12, where k is defined based on the cross-sectional area of the fracture. Steady-

state flow through a 10 m ×10 m × 0.01 m fractured rock mass is considered. In this chapter, we assume  

that  fracture permeability is much greater than matrix permeability, which is common in fractured 

reservoirs (van Golf-Racht 1982; Nick et al. 2011). The flow regimes of highly fractured rock mass can be 

characterized by the fracture-matrix permeability ratio. If the ratio is greater than 10
5
 - 10

6
, fractures 

carry nearly all the flow (Matthai, Belayneh 2004; Matthai, Nick 2009). Since we are interested in the 

non-uniform flow in well-connected fracture networks, for simplicity we assume that the matrix is 

impermeable; fluid flow takes place only in the fracture network. For computing flow in discrete fracture 

networks, as in most numerical simulation methods, Darcy’s Law for steady-state incompressible flow is 

employed, and mass is conserved at each intersection of fractures. In our models, we induce fluid flow 

from the left side to the right side by applying a constant difference in hydraulic head across the domain 

while all the other boundaries are impermeable. The equivalent permeability of the fracture network K 

(in m
2
) is defined by  

                                                       � =	� �∙�⁄
∆� �⁄ ∙ �

��                                                                       (2.2) 

Where Q is the volumetric flow rate (m
3
/s), L the length of square region (m), and W the thickness of the 

region (m), µ the fluid viscosity (Pa·s), ρ the fluid density (kg/m
3
), ɡ the acceleration due to gravity (m/s

2
) 

and Δh the difference in hydraulic head between inflow and outflow boundaries; in petroleum 

engineering, this is equal to Δp/ρɡ, where Δp is the pressure difference (Pa). Mafic
TM

, a companion 

program of FracMan
TM

, is employed to simulate flow in the fracture networks.  

 

2.2.3 Methodology 

As mentioned above, we believe that when the aperture distribution is broad enough, there is a 

dominant sub-network which approximates the permeability of the entire fracture network. Our main 

interest lies in examining the influence of the aperture distribution (the exponent α in a power-law 

distribution and the standard deviation σ in a log-normal distribution) on the dominant sub-network. 

Countless criteria can be used to decide which portion of fractures to remove, such as fracture length, 

aperture, [length × aperture], velocity, etc. Here we choose a criterion based on the flow-simulation 

results. Mafic
TM

 subdivides the fractures into finite elements for the flow calculations. The flow velocity 

at the center of each finite element and the product of flow velocity and aperture (Qnodal) can be 

obtained. Based on this value, we compute the average value (Q) of all the elements in each fracture. Q 

is then used as the criterion to eliminate fractures: fractures are eliminated in order, starting from the 

one with the smallest value of Q to the one with the largest value of Q. After each step, we calculate the 
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equivalent network permeability of the truncated network. It should be noted that the elimination of 

fractures is based on the flow in the original fracture network, not the truncated network. 

We also describe the properties of the “backbone”, i.e. the set of fracture segments that conduct flow, 

specifically its aperture distribution. The backbone is determined by removing fractures which do not 

belong to the spanning cluster, as well as dead-ends. In other words, the backbone is formed by the 

fracture segments with non-zero Q. The dead ends are often parts of a fracture rather than the entire 

fracture. In order to describe the properties of the conducting backbone, we reduce the fracture 

network to its backbone at the start, and at each step after eliminating fractures. 

Because the generation of the fracture network is a random process, an infinite number of fracture 

networks could be generated with the same parameter values for the density, orientation, fracture 

length and the aperture distribution. In this study, for each set of parameter values, we generate one 

hundred realizations. 

 

2.2.4 Percolation Theory 

Percolation theory is a powerful mathematical tool to analyze transport in complex systems (Aharony, 

Stauffer 2003; Sahimi 2011). It has been widely used to describe the connectivity and the conductivity of 

fracture networks. 

Our research focuses on well-connected fracture networks, so we employ percolation theory here to 

analyze the connectivity of the initial fracture network, to illustrate how far above percolation 

threshold, and how well-connected, the initial fracture network is. 

The simplest percolation models are site percolation and bond percolation, in which sites or bonds on 

an infinite lattice are occupied and open to flow with a probability p. To analyze a fracture network, 

continuum percolation is more applicable, in which fractures can be placed anywhere and can be of 

variable length. To analyze the connectivity of a fracture network using percolation theory, one must 

choose a parameter equivalent to the occupancy probability used in site or bond percolation. Different 

choices have been considered in previous studies. The first is the average number of intersections per 

fracture (Robinson 1983). A second is the number of factures in the system (Balberg et al. 1991; 

Berkowitz 1995). A third is the dimensionless density, defined as p = Nl
2
/L

2
, where N is the number of 

fractures, l is the (uniform) fracture length and L is the system size (Bour, Davy 1997). A fourth choice is 

the probability that a point is within the effective area of a fracture (Masihi et al. 2005; Masihi et al. 

2008). As the fracture networks used in this study are generated using the Enhanced Baecher Model, in 

which the fracture centers are located using a Poisson process, we choose the fourth option described 

above as the percolation parameter p :  

                                                                      � = 1 − exp ���〈!"#〉
%�& '                                                                (2.3) 

where N is the number of fractures in the system and ˂aex˃ is the average excluded area. Excluded area 

is defined as the area around a fracture in which the center of other fractures cannot lie in order to 

ensure the fractures do not intersect (Balberg et al. 1984). For fracture networks comprising two 

orthogonal fracture sets of uniform fracture length l, the average excluded area is defined as (Belayneh 

et al. 2006). 

                                                    〈()
〉 = 	 *+/2                                                                          (2.4) 

Masihi et al. (2008) proposed that if a fracture network has a distribution of fracture lengths, its 

connectivity is identical to that of a system with fixed fracture length equal to the so-called effective 

length leff, which is the root-mean-square fracture length: 
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                                                    *)..+ =	 〈*+〉                                                                          (2.5) 

The percolation threshold pc is the value at which a cluster of fractures connects the opposite sides of 

the region. The threshold value is affected by the position, the orientation, and the length distribution of 

fractures, the system size, etc. Masihi et al. (2008) studied the percolation threshold of fracture 

networks with different fracture-length distributions and different system sizes. For fracture networks 

generated in a 10 m × 10 m region with random orientation, when the length follows a power-law 

distribution with exponent α = 2, they proposed that the percolation threshold is around 0.66. In our 

case, the system size and the power-law exponent are consistent with their work, but the fractures are 

not randomly orientated, but in two perpendicular sets. As suggested by Masihi et al. (2005; 2008), the 

percolation threshold for a fracture network with two perpendicular fracture sets is lower than that for 

a model with randomly oriented fractures. Also, the truncation of the fracture-length distribution 

impacts the threshold value. Since the percolation threshold value is not our focus, here we consider 0.5 

to 0.7 as a reasonable estimate of the percolation threshold. For the cases we study here, the value of 

the percolation parameter � of initial fracture networks is around 0.9. Considering the definition of p in 

Eq. (2.4), a value p = 1 corresponds to infinite fracture density (zero probability of not intersecting 

another fracture). Thus our fracture network is far above the percolation threshold and is well-

connected.  

 

2.3 Identifying the Dominant Sub-Network Based on Flow Simulation Results 

2.3.1 Models without Correlation between Fracture Aperture and Length 

Power-Law Aperture Distribution. Some field observations and experimental studies show that a 

power-law distribution can describe the fracture-aperture distribution, although the available data is 

limited, especially from subsurface populations (Barton et al. 1989; Wong et al. 1989; Barton, Zoback 

1992; Belfield, Sovich 1994; Marrett 1996). The power-law probability density function for aperture / is: 

                                                        �(/) = 	/��                                                                          (2.6) 

If the power-law aperture distribution is described by Eq. (2.6), the studies cited above find that the 

value of the exponent α in nature is 1, 1.1, 1.8, 2.2, or 2.8. In this study, the power-law aperture 

distribution with a lower bound follows the form of Eq. (2.1), in which α should be larger than 1. To 

include the entire range of feasible cases (from narrow to broad aperture distribution), here we examine 

α in the range from 1.001 to 6. In each case, the fracture aperture is limited to the interval between 0.01 

mm and 10 mm. Because of this truncation, as the exponent α increases from 1 to 6, the fracture 

apertures concentrate in a narrow range near the lower limit (Fig. 2.1). For α = 1.001, the apertures 

occupy the entire range from 0.01 mm to 10 mm: the difference between the smallest and the largest 

aperture is nearly three orders of magnitude. For α = 4 to 6, most apertures lie between 0.01 mm and 

0.03 mm. The absolute magnitude of aperture is not important in the dimensionless results to follow, 

but a narrow range of apertures does affect the results. 
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Figure 2.1 The fraction of fractures F with aperture (d) larger than the given value, for power-law distributions with 

different values of the exponent α.  

In this chapter, we mainly show the results for α with values 1.001, 2, and 6. The results for α with 

additional values examined in this study can be found elsewhere (Gong, Rossen 2015). 

After running flow simulations on the percolation cluster of the original fracture network, we determine 

the value of Q for each fracture. The fractures with the smallest Q are eliminated first, then the larger 

ones. After a given number (10) of fractures are eliminated, we calculate the permeability of the 

remaining network and the cumulative length of the conducting backbone, lb, in that network. We then 

eliminate 10 more fractures and repeat until the network becomes disconnected. The normalized 

equivalent permeability of the truncated fracture network is shown in Fig. 2.2 for all 100 realizations for 

α with values 1.001, 2, and 6. The scatter in Fig. 2.2 reflects differences among the realizations. The red 

curve in each case shows the average trend through the 100 realizations. Figure 2.3 compares this 

average trend for the different values of α (α = 1.001 to 6). The results show that for all of the cases, a 

portion of fractures can be eliminated without significantly affecting the overall network permeability. 

Especially when the power-law aperture distribution exponent α = 1.001, the cumulative length of the 

conducting backbone of the truncated fracture network which retains 90% of the original-network 

equivalent permeability is roughly 30% of the total fracture length of the original fracture network. That 

is, there is a sparse sub-network which carries almost all the flow and can be a good approximation of 

the original fracture network. We call this sub-network retaining 90% of the original equivalent 

permeability the dominant sub-network. As exponent α increases from 1.001 to 6, the dominant sub-

network becomes denser, and the length of the pathway becomes longer. For α = 2, about 50% of 

fracture length can be removed while remaining 90% of the original permeability. In the case of α = 6, 

the cumulative length of the conducting backbone  of the dominant sub-network is around 60% of the 

total length of the original fracture network. It is worth noting that the largest ratio of lb/lo for all the 

cases is around 0.8, reflecting the length of dangling and dead-ends in the original fracture network, 

which represents about 20% of its total length. 

If we compare cases with aperture distributions from narrow to broad, we find that when the aperture 

distribution is broad (α ≤ 2), most of fractures can be eliminated without significantly affecting the 

equivalent permeability: the fracture network behaves as a sparser sub-network. As the aperture 

distribution becomes narrower (α increase from 1.001 to 6), to retain a certain percent of the original 

fracture network permeability, more fractures are needed (Fig. 2.3). 
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Figure 2.2 Sub-network equivalent permeability (Kb) normalized by the equivalent permeability of the original 

fracture network (Ko), plotted against the length of the backbone of the truncated fracture network (lb) normalized 

by the total length of the original fracture network (lo): power law aperture distributions with (a) α = 1.001,  

(b) α = 2, (c) α = 6. Results of 100 realizations shown for each value of α. Red curve is the average trend curve. 

 

Figure 2.3 Average curves from Fig.2.2, including additional values of α. 

In the network, some subsets of fractures do not participate in fluid flow; these are known as dead-end 

or dangling fractures. To identify the flow structure in fracture networks, the backbone of the original 

fracture network and its sub-network are determined by removing fractures which do not belong to the 

spanning cluster, as well as dead-ends (Fig. 2.4). As presented in Fig. 2.4, the structure of the sub-

network that retains 90% of the original equivalent network permeability depends on α. For α = 1.001 

(Fig. 2.4b), the backbone is much sparser than that for larger values of α, because many more fractures 

can be removed without reducing the permeability greatly. 
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Figure 2.4 (a) One realization of the fracture network examined in this study. The size of the fractured region is 10 

m × 10 m × 0.01 m. The left and right boundaries are each at fixed hydraulic head; the difference in hydraulic head 

is 1 m. Water flows from left to right; the top and bottom edges are no-flow boundaries. (b) Dominant sub-network 

for one realization with a power-law aperture distribution with α = 1.001. (c) Dominant sub-network for one 

realization with a power-law aperture distribution with α = 2. (d) Dominant sub-network for one realization with a 

power-law aperture distribution with α = 6.  

 

Figure 2.5 Length of the backbone of the truncated fracture network (lb) normalized by the total length of the 

original fracture network (lo) plotted against percentage of eliminated fractures, for power-law aperture 

distributions with exponent α = 1.001 to 6. Average trend curve for 100 realizations shown for each value of α.  

For this initial study, for simplicity, we chose to study a 10 m × 10 m region with no flow boundaries on 

top and bottom in Fig. 2.4. As a result, the region near those boundaries shows fewer fractures in the 

dominant sub-network. However, Fig. 2.4 suggests that the size of the region affected by the boundaries 

is limited, and that the main conclusion of our work, that most flow passes through relatively few 

fractures, and the rest fractures can be eliminated without significantly affecting the network 

permeability is not dependent on finite-size limitations. 

The importance of fractures to fluid flow is not simply related to fracture length or fracture aperture. 

Figure 2.5 shows that when fractures are deleted according to flow-simulation results, the cumulative 

length of the conducting backbone of truncated fracture networks decreases almost linearly. This 

shows, for instance, that it is not exclusively short fractures that are eliminated first. The trend is nearly 

the same for different values of α. The length lb here is not the cumulative length of all fractures with 

some segment in the backbone, but the cumulative length of all the fracture segments in the backbone. 

Thus for the original network, the reduction in length by about 20% arises mostly because of eliminating 

segments, not whole fractures. The plots in Fig. 2.5 end at the point where some sub-networks in the 

100 realizations are disconnected entirely.  

To understand why the dominant sub-network is sparser when the aperture distribution is broader, we 

examine one randomly selected realization for each value of α in detail. The only difference among the 

specific realizations used for different value of α is the aperture distribution. First, we examine the 

distribution of the values of Q for each fracture in the original fracture network. As presented in Fig. 2.6, 

when α = 1.001, the fracture network shows strongly preferential flow paths: a small portion of the 

0 20 40 60 80 100
0.0

0.2

0.4

0.6

0.8

1.0
 α = 1.001
 α = 2
 α = 3
 α = 4
 α = 5
 α = 6

l b
/l o

 [-
]

Percentage of eliminated fractures [%]



Chapter 2                                                                                                                                                      15 

 

fractures carry much more flow than the others. Specifically, the range in Q for most fractures in the 

backbone extends over at least 5 orders of magnitude for α = 1.001 (from 4 through 8 in Fig. 2.6a).  For  

α = 6, the value of Q for most fractures lie within a range of about 2 orders of magnitude (from 5 to 7 in 

Fig. 2.6c). Thus, when the aperture distribution is broad, the equivalent permeability is not strongly 

affected as the “unimportant” fractures that are eliminated. As the aperture distribution becomes 

narrower, flow does not concentrate in a small portion of fractures: most fractures play a roughly similar 

role in the flow, which means fewer fractures can be removed without significantly reducing the 

equivalent network permeability.  

The relationship between the aperture and Q for each fracture is shown in Fig. 2.7. The importance of 

individual fractures to the overall flow properties of fracture networks cannot be simply related to the 

aperture of each fracture. There are some fractures with small aperture that carry more flow than 

fractures with larger aperture. This is true for all the cases with aperture distribution, from narrow to 

broad.  

 

Figure 2.6 Histogram of Q for each fracture normalized by the minimum value of Q for all fractures in the backbone 

(Qm) in log-10 space: power-law aperture distributions with (a) α = 1.001, (b) α = 2, (c) α = 6. Results of one 

realization shown for each value of α. 

 

Figure 2.7 Q for each fracture normalized by the minimum value of Q for all the fractures in log-10 space plotted 

against aperture d: power-law aperture distributions with (a) α = 1.001, (b) α = 2, (c) α = 6. Results of one 

realization shown for each value of α. The red dashed line indicates the value of Q below which the fractures are 

eliminated while retaining 90% of the original permeability. 

Similar to the lack of a simple relation between the aperture and Q, there is no clear relationship 

between the fracture length and the flow each fracture carries (Fig. 2.8). There are some relatively long 

fractures that carry very little flow, and some short fractures playing a more-important role than the 

longer fractures. Fracture networks with narrow and broad aperture distribution show similar lack of 

correlation between the fracture length and the flow each fracture carries in Fig. 2.8. 
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Figure 2.8 Q of each fracture normalized by the minimum value of Q in log-10 space plotted against the fracture 

length l: power-law aperture distributions with (a) α = 1.001, (b) α = 2, (c) α = 6. Results of one realization shown 

for each value of α. The red dashed line indicates the value of Q below which the fractures are eliminated while 

retaining 90% of the original permeability. 

In principle, each individual fracture could play a different role in the original fracture network and the 

dominant sub-network. Most of the fractures carry nearly the same flow in the original fracture network 

and the dominant sub-network, however, as shown in Fig. 2.9. This holds for the aperture distribution 

ranging from narrow to broad. In the dominant sub-network, some fractures carry more flow, and some 

carry less, compared to the original fracture network. There is no fluid flow through some fractures in 

the dominant sub-network at all. When some fractures that carry little flow are eliminated from the 

fracture network, their removal disconnects some other fractures from the backbone. This could 

happen, for instance, if several fractures carrying little flow feed into one fracture that carries the sum 

of all their flows. Then the removal of the fractures carrying little flow can lead to the disconnection of a 

fracture that carries more flow from the backbone. But, in fact, there are relatively few fractures 

disconnected from the backbone in the dominant sub-network. 

 

Figure 2.9 Comparison of Q for fractures in the original fracture network (Qo) and in the dominant sub-network (Qb): 

power-law aperture distributions with (a) α = 1.001, (b) α = 2, (c) α = 6. Both of Qo and Qb are normalized by the 

minimum value of Q in the original fracture network (Q
m 

o ). Results of one realization shown for each value of α. 

 

Figure 2.10 Comparison of the aperture distribution of the original fracture network and the dominant sub-network: 

power-law aperture distributions with (a) α = 1.001, (b) α = 2, (c) α = 6. F(d) is the fraction of fractures with 

aperture (d) larger than the given value. Results of one realization shown for each value of α. 

Figure 2.10 compares the aperture distribution of the dominant sub-network to that of the original 

fracture network. The plots are similar to each other, which indicates again that the fractures with small 

aperture are not systematically removed.  
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We may summarize our arguments of the cases with power-law aperture distributions as follows. For all 

of the cases with a power-law aperture distribution, at least a portion of fractures can be eliminated 

without significantly affecting the effective network permeability. The number of fractures can be 

removed is strongly affected by the value of α, i.e. the breadth of the aperture distribution. The broader 

the aperture distribution is, the more fractures can be eliminated without significantly affecting the 

overall flow behavior. When the aperture distribution is broad enough (α ≤ 2), the original fracture 

network behaves as a sparse sub-network, and the total length of the fractures in the sub-network is 

much shorter than that of the original fracture network. The importance of each fracture to the flow 

behavior of the entire fracture network cannot be simply related to its aperture or length; some 

fractures with narrow aperture or short length play a more-important role than others with broader 

aperture or greater length.  

Log-Normal Aperture Distribution. Some researchers proposed a log-normal distribution for apertures 

based on field studies and hydraulic tests (Snow 1970; Long, Billaux 1987; Dverstorp, Andersson 1989; 

Cacas et al. 1990a; Cacas et al. 1990b; Tsang et al. 1996). Fracture-network models with log-normal 

distributions of apertures have been widely used to simulate experiments and derive theoretical 

relationships (Charlaix et al. 1987; Feng et al. 1987; Long, Billaux 1987; Dverstorp, Andersson 1989; 

Cacas et al. 1990a; Cacas et al. 1990b; Tsang et al. 1996; Margolin et al. 1998; de Dreuzy et al. 2001b). 

The log-normal distribution is specified by the following probability density function: 

                                                     �(/) = 	 	
012345(6)√+8 9�� :− 	

+ �12345(0)�	�
6 '+;                                         (2.7) 

where μ and σ are the mean and the standard deviation in log-10 space. The truncated log-normal 

distribution has two additional parameters: a minimum and a maximum value of apertures, which are 

0.01 mm and 10 mm, respectively, in this study. Field studies and hydraulic tests found values of σ from 

0.1 to 0.3, 0.23, and 0.47 (Snow 1970; Dverstorp, Andersson 1989; Tsang et al. 1996). To test the widest 

range of feasible values, we test values of σ from 0.1 to 0.6, as illustrated in Fig. 2.11. As shown in  

Fig. 2.11, the upper and lower bounds have little effect on these distributions. The aperture distribution 

becomes broader as σ increases from 0.1 to 0.6.  

 

Figure 2.11 Probability density function (p(d)) for fracture aperture for log-normal distributions with the same 

mean value but different standard deviations in log-10 space.  

In this chapter, we mainly show the results for σ with values 0.1, 0.4, and 0.5. The results for σ with 

additional values examined in this study can be found elsewhere (Gong, Rossen 2015). 
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Similar to our approach in dealing with the cases of power-law aperture distributions, first we run flow 

simulation for each realization, and then eliminate fractures based on the flow-simulation results, 

starting with the fracture with the smallest Q. For each sub-network, the equivalent permeability, the 

cumulative length of the conducting backbone, and the aperture distribution are calculated. The overall 

trend of the change of the equivalent permeability is obtained over the 100 realizations for each set of 

parameter values. Figure 2.12 presents the results for the cases with σ = 0.1, 0.4, and 0.5, which are 

typical values observed in field studies. The broader the aperture distribution, the more fractures can be 

removed from the system while retaining a given fraction of the original network permeability  

(Fig. 2.13). For example, to retain 90% of the equivalent permeability of the original network, the 

cumulative length of the conducting backbone of the dominant sub-network is around 60% of total 

fracture length of the original fracture network when σ = 0.1, while the ratio is roughly 35% and 30% 

when σ = 0.4 and 0.5, respectively. Clearly, the dominant sub-network which retains 90% of the original 

equivalent permeability is strongly affected by the aperture distribution. When the standard deviation is 

larger than 0.4, the aperture distribution is broad enough that most fractures can be eliminated without 

significantly affecting the equivalent network permeability. The conducting backbone of the dominant 

sub-network is much sparser than that of the original fracture network (Fig. 2.14). 

 

Figure 2.12 Sub-network equivalent permeability (Kb) normalized by the equivalent permeability of the original 

fracture network (Ko), plotted against the length of the backbone of the truncated fracture network (lb) normalized 

by the total length of the original fracture network (lo): log-normal aperture distributions with (a) σ = 0.1,  

(b) σ = 0.4, (c) σ = 0.5. Results of 100 realizations shown for each value of σ. Red curve is the average trend curve. 

 

Figure 2.13 Average curves from Fig. 2.12. 
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Figure 2.14 (a) One realization of the fracture network examined in this study. (b) Dominant sub-network for one 

realization with a log-normal aperture distribution with σ = 0.1. (c) Dominant sub-network for one realization with 

a log-normal aperture distribution with σ = 0.4. (d) Dominant sub-network for one realization with a log-normal 

aperture distribution with σ = 0.5. 

As with the cases of power-law aperture distributions, in the cases of log-normal aperture distributions, 

the length of the backbone of sub-networks decreases nearly linearly with increasing portion of 

fractures being eliminated, based on the flow-simulation results. As in Fig. 2.3, the ratio shown in  

Fig. 2.15 starts at about 0.8 for zero fractures removed because not all fracture segments in the original 

network are in the backbone. The plots end at the point where some sub-networks are disconnected 

entirely.  

 

Figure 2.15 Length of sub-network backbone (lb) normalized by the total length of the original fracture network (lo) 

plotted against the percentage of eliminated fractures, for the cases of log-normal aperture distributions with the 

same log-mean value but different log-standard deviations (σ) from 0.1 to 0.6. Average trend curve for 100 

realizations shown for each value of σ.  

The distributions of Q for fractures in the original networks with log-normal aperture distributions are 

similar to those with power-law aperture distributions (cf. Fig. 2.6). When the aperture distribution is 

narrow (σ = 0.1), the distribution of Q is also narrow: most of fractures carry a similar amount of flow. As 

a result, when a portion of fractures is eliminated, the equivalent network permeability is strongly 

affected. As the aperture distribution becomes broader, the distribution of Q is also broader, and there 

is a small portion of fractures which carry much more flow than the others. In other words, the fracture 

network shows stronger preferential flow paths when the aperture distribution becomes broader. Thus, 

removing a portion of fractures which carry little flow does not greatly reduce the equivalent network 

permeability, as the fractures that play a more important role are still in the system. 

As presented in Fig. 2.16 and Fig. 2.17, the flow behavior of each fracture cannot be simply related to 

either aperture or length. However, compared to the cases with power-law aperture distributions, we 

find that for most of the fractures, the overall trend is that fractures with larger aperture tend to carry 

more flow than those with narrower aperture, which is different from the results for the cases with 

power-law aperture distributions (cf. Fig. 2.7). We believe a comparison between Figs. 2.1 and 2.11 

provides the answer: there are many more small fractures (just above the cut-off for fracture aperture) 

in the power-law distribution than in the log-normal distribution. It may be that it is just as unlikely for a 
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narrow fracture to be important in a power-law distribution, but there are so many of them that some 

of them do play a role. 

Similar to the cases of power-law aperture distributions, most fractures carry similar flow when they are 

in the dominant sub-network and in the original fracture network, which indicates that they behave 

similarly. 

 

Figure 2.16 Q for each fracture normalized by the minimum value of Q for all the fractures in log-10 space plotted 

against fracture aperture: log-normal aperture distributions with (a) σ = 0.1, (b) σ = 0.4, (c) σ = 0.5. Results of one 

realization shown for each value of σ. The red dashed line indicates the value of Q below which the fractures are 

eliminated in this case. 

 

Figure 2.17 Q for each fracture normalized by the minimum value of Q for all the fractures in log-10 space plotted 

against fracture length l: log-normal aperture distributions with (a) σ = 0.1, (b) σ = 0.4, (c) σ = 0.5. Results of one 

realization shown for each value of σ. The red dashed line indicates the value of Q below which the fractures are 

eliminated in this case. 

Figure 2.18 presents the aperture distribution of the original fracture network and that of the dominant 

sub-network for one realization for each value of σ. Compared to the original fracture network, the 

dominant sub-network lacks a portion of small fractures which means that fractures with small aperture 

are eliminated systematically. The aperture distributions are different from each other. 

 

Figure 2.18 Comparison of aperture distribution for the original fracture network and the dominant sub-network: 

log-normal aperture distributions with (a) σ = 0.1, (b) σ = 0.4, (c) σ = 0.5. p(d) is the probability density function. 

Results of one realization shown for each value of σ. 

In sum, for the log-normal aperture distributions, we conclude that when the aperture distribution is 

broad enough (σ ≥ 0.4), most of fractures can be taken out without significantly affecting the equivalent 

network permeability. In contrast to the cases of power-law aperture distributions, the fractures with 
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larger aperture tend to play a more important role for the flow behavior of the fracture network, 

although the flow carried by each fracture cannot be simply related to the fracture aperture. 

 

2.3.2 Aperture Proportional to Fracture Length 

Field measurements and theoretical studies raise the possibility of a relationship between fracture 

aperture and fracture length (Stone 1984; Hatton et al. 1994; Vermilye, Scholz 1995; Johnston, 

McCaffrey 1996; Renshaw, Park 1997). Both nonlinear and linear relationships have been proposed in 

previous studies based on elastic theory and field data. Here we assume that the aperture of each 

fracture is uniform and proportional to fracture length: 

                                                         / = <*                                                                              (2.8) 

where d is aperture, C is an empirical coefficient, and l is fracture length. Vermilye and Scholz (1995) 

suggested the empirical coefficient lies between 1×10
-3

 and 8×10
-3

 Here for the Mafic
TM

 flow calculations 

we use 2×10
-3

. However, since we normalize the properties of the sub-network by those of the original 

fracture network, the value of C is unimportant to what follows.  

As mentioned above, all the cases we test in this study follow a power-law length distribution with 

exponent α = 2, which is truncated between 0.2 m and 6 m. Since in this section aperture is proportional 

to fracture length, the apertures also follow a power-law distribution with exponent α = 2, and lie in the 

range of 0.4 mm to 12 mm. For the case described above with α = 2 and aperture independent of 

fracture length, the apertures lie mostly in the range of 0.01 mm to 0.1 mm. Whether or not aperture is 

dependent on fracture length, the difference between the smallest and the largest value is nearly one 

order of magnitude, although the absolute values are different. The absolute value does not matter to 

the normalized results presented below. 

Figures 2.19 and 2.20 show the sub-network equivalent permeability after elimination of a portion of 

fractures, where the aperture is, respectively, proportional to and independent of the fracture length 

respectively. In the two types of cases, the overall flow behavior is roughly similar and the cumulative 

length of the conducting backbone of the dominant sub-networks are approximately 50% of the total 

fracture length separately. 

 

Figure 2.19 Sub-network equivalent permeability (Kb) normalized by the equivalent permeability of the original 

fracture network (Ko), plotted against the length of the backbone of the truncated fracture network (lb) normalized 

by the total length of the original fracture network (lo): aperture is proportional to fracture length. Results of 100 

realizations shown. Red curve is the average trend curve. 
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Figure 2.20 Average curves from Fig. 2.2b and Fig. 2.19 . 

Figure 2.21 presents the distribution of Q among fractures for one realization where aperture is 

proportional to fracture length. The values of Q distribute more broadly when aperture is proportional 

to fracture length than when aperture is independent of fracture length (cf. Fig. 2.6b). In this realization, 

the original fracture network has 1120 fractures and the sub-network has 633 fractures when the 

aperture is independent of the length, but only 217 fractures when the aperture is proportional to the 

fracture length: similar cumulative length, but fewer fractures. This indicates that shorter fractures are 

eliminated preferentially.  

Figure 2.22 shows the relationships between aperture and Q, which shows that, although there are 

some fractures with small aperture (shorter fractures) that carry a lot of flow, the overall trend is that 

fractures with larger aperture (and greater length) tend to carry more flow.  

 

Figure 2.21 Histogram of Q of each fracture normalized by the minimum value of Q of all the fractures in log-10 

space: aperture is proportional to fracture length. Results of one realization shown.  
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Figure 2.22 Q of each fracture normalized by the minimum value of Q of all the fractures in log-10 space plotted 

against aperture: aperture is proportional to fracture length. Results of one realization shown. The red dashed line 

indicates the value of Q below which the fractures are eliminated in this case. 

Whether or not aperture is proportional to fracture length, the original fracture network behaves as a 

sparse network, and the cumulative length of the conducting backbone of the dominant sub-network is 

roughly half of the total length of the original fracture network.  However, in contrast to the cases 

where the aperture is independent of the fracture length, the fractures with narrower aperture (shorter 

fractures) tend to be less important to flow in the network than those with larger aperture (longer 

fractures) when the aperture is proportional to the fracture length. 

 

2.4 Possibility of Identifying Dominant Sub-Network without Doing Flow Simulation  

In this section, we explore possible criteria to obtain a sparse dominant sub-network without doing flow 

simulations. The results in the previous section show clearly that the aperture distribution has a great 

influence on the dominant sub-network. Also, fracture length takes an important role in the flow 

behavior of fracture networks. Besides the aperture and the length, the other factor we consider here is 

the number of intersections each fracture has with other fractures. It is believed that this term reflects 

the importance of a fracture to the connectivity of the fracture network (Robinson 1983). We define 

criteria from these three individual factors and some of their combinations (Table 2.1). In the previous 

section, we discussed identifying the dominant sub-network based on flow simulation results. That is, 

we conduct a flow simulation on the original fracture network, and then eliminate the fractures starting 

with the smallest Q, in order of increasing Q. In this section, we explore the possibility of identifying the 

dominant sub-network without doing flow simulations first. The fractures are now eliminated according 

to some fracture property. For example, the fractures are eliminated based on aperture, starting with 

the smallest aperture, and then in order of increasing aperture. 

We compare the effective permeability of the sub-network with a portion of fractures eliminated from 

the original fracture network using these criteria. Not all the cases examined above are tested here: for 

the cases with power-law aperture distributions, we examine α = 1.001, 2, and 6; for the cases of log-

normal aperture distributions, we examine σ = 0.1, 0.2, and 0.6; we also test the cases where the 

aperture is proportional to the fracture length.  
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Table 2.1 Fracture-Elimination Criteria 

Criterion Description 

1 Aperture (d) 

2 Length (l) 

3 Number of intersections (n) 

4 Flow simulation results (q) 

5 Aperture × Length (d × l) 

6 Aperture
2
 × Length (d

2
 × l) 

7 Aperture
3
 × Length (d

3
 × l) 

8 Aperture × Length
2
 (d × l

2
) 

9 Aperture
3
 / Length (d

3
 / l) 

10 Aperture × Number of intersections (d × n) 

11 Length × Number of intersections (l × n) 

12 Aperture × Length × Number of intersections (d × l × n) 

 

As presented in Figs. 2.23 and 2.24, aperture is a better criterion than the others (more fractures can be 

eliminated while retaining 90% of the original permeability). For the case in which the aperture is 

proportional to the fracture length, the results obtained according to the criteria of aperture and 

fracture length are the same; therefore, only four plots are shown in Fig. 2.25.  

Nevertheless, eliminating fractures based on aperture is not nearly as efficient as eliminating fractures 

based on flow simulations. 

We compare the effective permeability of the sub-network with a portion of fractures eliminated from 

the original fracture network using these criteria. Not all the cases examined above are tested here: for 

the cases with power-law aperture distributions, we examine α = 1.001, 2, and 6; for the cases of log-

normal aperture distributions, we examine σ = 0.1, 0.2, and 0.6; we also test the cases where the 

aperture is proportional to the fracture length.  

As presented in Figs. 2.23 and 2.24, aperture is a better criterion than the others (more fractures can be 

eliminated while retaining 90% of the original permeability). For the case in which the aperture is 

proportional to the fracture length, the results obtained according to the criteria of aperture and 

fracture length are the same; therefore, only four plots are shown in Fig. 2.25. Nevertheless, eliminating 

fractures based on aperture is not nearly as efficient as eliminating fractures based on flow simulations. 

 

Figure 2.23 Sub-network equivalent permeability (Kb) normalized by the equivalent permeability of the original 

fracture network (Ko), plotted against the length of the backbone of the truncated fracture network (lb) normalized 

by the total length of the original fracture network (lo) for power-law aperture distributions with (a) α = 1.001,  

(b) α = 2, (c) α = 6. Fractures are eliminated according to different criteria, as indicated. 
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Figure 2.24 Sub-network equivalent permeability (Kb) normalized by the equivalent permeability of the original 

fracture network (Ko), plotted against the length of the backbone of the truncated fracture network (lb) normalized 

by the total length of the original fracture network (lo) for log-normal aperture distributions with (a) σ = 0.1,  

(b) σ = 0.2, (c) σ = 0.6. Fractures are eliminated according to different criteria, as indicated. 

 

Figure 2.25 Sub-network equivalent permeability (Kb) normalized by the equivalent permeability of the original 

fracture network (Ko), plotted against the length of the backbone of the truncated fracture network (lb) normalized 

by the total length of the original fracture network (lo), for the cases where the aperture is proportional to the 

fracture length. Fractures are eliminated according to different criteria, as indicated. 

 

2.5 Conclusions 

This work focuses on the effect of fracture aperture distribution on the dominant sub-network that by 

itself retains 90% of the effective permeability of the original fracture network. A number of aperture 

distributions are tested: log-normal and power-law distributions (from narrow to broad), and one where 

the aperture is proportional to the fracture length. If the aperture distribution is broad enough (α ≤ 2 for 

power-law aperture distributions and σ ≥ 0.4 for log-normal aperture distributions), most of the 

fractures can be eliminated without significantly reducing the effective permeability. As the exponent α 

of a power-law aperture distribution increases or the standard deviation σ of a log-normal aperture 

distribution decreases, fewer and fewer fractures can be removed without significantly reducing the 

network equivalent permeability.  

The importance of each fracture to the overall flow is not simply related to aperture or length. For the 

cases of both the log-normal and power-law aperture distributions, and that where the aperture is 

proportional to the fracture length, there are some fractures with relatively narrow aperture that play a 
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greater role in the overall flow than some others with larger aperture. It is also true that some fractures 

with relatively large aperture that carry much less flow than most of the fractures. 

Flow simulations are more effective at identifying the largest sub-network that retains 90% of the 

original permeability than eliminating fractures based on length, aperture or number of intersections. 

Among those properties, eliminating fractures based on aperture is the most efficient choice considered 

here, but not as efficient as using flow calculations. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 

 

                                                                                    
The content described in this chapter is also published in :: Gong, J, Rossen, W.R. Shape factor for dual-permeability fractured reservoir 

simulation: Effect of non-uniform flow in 2D fracture network. Fuel. 2016;184:81-8. doi:http://dx.doi.org/10.1016/j.fuel.2016.06.113. 
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3.1 Introduction  

Naturally fractured reservoirs contain a significant amount of hydrocarbon reserves worldwide (Saidi 

1987), However, the oil recovery from these reservoirs has been rather low. The low level of oil recovery 

indicates that more accurate reservoir characterisation and flow simulation is needed.  

Reservoir simulation is one of the most practical methods of studying flow problems in porous media. 

For fractured reservoir simulation, the dual-porosity/dual-permeability concept and the discrete 

fracture model are two typical methods (Moinfar et al. 2011). In the dual-porosity/dual-permeability 

approach, the fracture and matrix systems are treated as separate domains, and interconnected 

fractures serve as fluid flow paths between injection and production wells, while the matrix acts only as 

fluid storage, and these two domains are connected with an exchange term (Barenblatt et al. 1960; 

Warren, Root 1963; Kazemi et al. 1976). In a dual-permeability model, fluid flow can also take place 

between matrix blocks, unlike from the dual-porosity model (Hill, Thomas 1985; Gilman, Kazemi 1988). 

In order to simulate the realistic fracture geometry and account explicitly for the effect of individual 

fractures on fluid flow, discrete fracture models have been developed (Kim, Deo 2000; Karimi-Fard, 

Firoozabadi 2003; Karimi-Fard et al. 2004; Geiger et al. 2004; Matthäi et al. 2007; Li, Lee 2008; Li et al. 

2009). Compared to the dual-porosity/dual-permeability models, discrete fracture models represent a 

fracture network more explicitly and make the simulation more realistic. But discrete fracture models 

are typically difficult to solve numerically. For the naturally fractured reservoirs with many fractures and 

a very high degree of interconnection, DFN simulation simply isn't feasible. To generate a dual-

porosity/dual-permeability model, it is necessary to define average properties for each grid cell, such as 

porosity, permeability, matrix-fracture interaction parameters (typical spacing or shape factor), etc 

(Dershowitz et al. 2000). It has been recognized that the fracture-matrix exchange coefficient or shape 

factor depends on matrix-block geometries. Many methods for evaluating the exchange coefficient or 

shape factor for blocks with various shapes have been proposed, such as the Laplace transform method 

(Barker 1985; Quintard, Whitaker 1993, 1996), asymptotic analysis (Lim, Aziz 1995; Zimmerman et al. 

1993), random-walk method (Noetinger et al. 2016), equivalent –block-size methods (Kazemi et al. 

1976; Warren, Root 1963), etc. Landereau et al. (2001) compares the most commonly used methods, 

and discusses the connection between them. In general, the fracture-matrix exchange coefficient is 

related to a characteristic length (equivalent block size) of the system. Therefore, the discrete fracture 

network considered to generate the dual-porosity model parameters is crucial. Using homogenization, 

one can treat matrix-fracture exchange more accurately than in dual porosity/dual permeability 

simulations (Salimi, Bruining 2010), but, again, one needs a characteristic matrix-block size.  

As we presented in a previous study (Gong, Rossen 2014), even in a well-connected fracture network, 

there is a dominant sub-network which carries almost all the flow, but it is much more sparse than the 

original network (Fig. 3.1). The flow-path length of the dominant sub-network can be as little as roughly 

30% of that of the corresponding original fracture network in the most extreme case. This suggests that 

in secondary production, the water injected flows mainly along a small portion of the fracture network. 

In contrast, in primary production even relatively small fractures can be an efficient path for oil to flow 

to a production well.  

This chapter is organized as follows: we first introduce the numerical model and research process. Next, 

we analyse the sizes of the matrix blocks formed by the entire fracture network and the corresponding 

dominant sub-network. Finally, we point out the implications of this distinction for the dual-

porosity/dual-permeability reservoir simulation.  
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3.2 Models 

Since this is a follow-up study to our previous research (Gong, Rossen 2014), the models used here are 

the same as the ones adopted before (Fig. 3.1). Here we only introduce the models briefly, and more 

details can be found in the previous work. Fracture networks are generated in a 10 m × 10 m × 0.01 m 

region using the commercial fractured-reservoir simulator FracMan
TM

 (Dershowitz et al. 2011). Two 

fracture sets which are nearly orthogonal to each other are assumed, with almost equal numbers of 

fractures in the two sets.  Each fracture, with a rectangular shape, is located following the Enhanced 

Baecher Model and is perpendicular to the plane which follows the flow direction and penetrates the 

top and bottom boundaries of the region. Because of the uncertainties in data and the influence of cut-

offs in measurements, fracture-trace lengths have been described by exponential, log-normal or power-

law distributions in previous studies (Segall, Pollard 1983; Rouleau, Gale 1985; Bour, Davy 1997). 

Commonly, a power-law distribution is assumed by many researchers to be the correct model for 

fracture length (Nicol et al. 1996; Odling 1997; de Dreuzy et al. 2001a, b), with exponent α ranging from 

1.5 to 3.5. In this study, the fracture length follows the power-law distribution (f(x)):  

                                                =(�) = 	 ��	

��
 (
��



 )� 							                                                            (3.1) 

Where α is the power law exponent, x is the fracture length and xmin the lower bound on x, which we 

take to be 0.2 m. In order to make sure that there are no extremely short or long fractures, and in 

particular that opposite sides of our region of interest cannot be connected by a single fracture, we 

choose α = 2 and truncate the length distribution on the upper end at 6 m. Since even the smallest 

fracture length (0.2 m) is much larger than the thickness of the region of interest (0.01 m), the 3D model 

can be seen as a 2D fracture network. 

For fracture apertures, two kinds of distribution which have been proposed in previous studies are 

adopted: power-law (Barton et al. 1989; Wong et al. 1989; Barton, Zoback 1992; Belfield, Sovich 1994; 

Marrett 1996; Ortega, Marrett 2000) and log-normal (Snow 1970; Tsang, Tsang 1987; Long, Billaux 1987; 

Dverstorp, Andersson 1989; Cacas et al. 1990a; Cacas et al. 1990b). In each kind of distribution, to 

include the entire range of feasible cases (from narrow to broad aperture distribution), different 

parameter values (α for a power-law aperture distribution and σ for a log-normal aperture distribution) 

are examined. The aperture is randomly assigned to each fracture.  

The power-law distribution can also be defined as: 

                                                          =(�) = 	���                                                                           (3.2) 

If the power-law aperture distribution is described by Eq. (3.2), the studies cited above found that the 

value of the exponent α in nature is 1, 1.1, 1.8, 2.2, or 2.8. In this study, the power-law aperture 

distribution is defined by Eq. (3.1) as well as the fracture length distribution, where x stands for aperture 

instead of length. Different from Eq. (3.2), Eq. (3.1) includes a minimum cut-off value, and α should be 

larger than 1. To include the entire range of feasible cases (from narrow to broad aperture distribution), 

here we examine α in the range from 1.001 to 6. In each case, the fracture aperture is limited to the 

interval between 0.01 mm and 10 mm. The aperture range can vary greatly at different locations, it also 

depends on the resolution and the size of the region studied. According to the field data collected from 

the Ship Rock volcanic plug in NW New Mexico (Delaney, Pollard 1981) and Culpeper Quarry and 

Florence Lake  (Vermilye, Scholz 1995), the aperture range [0.01mm, 10mm] adopted here is realistic, at 

least at some locations in natural.   

The log-normal distribution is specified by the following probability density function: 

                                                    =(�) = 	 	

>?�45(6)√+8 9�� :− 	

+ �>?�45(
)�	�
6 '+;                                               (3.3) 
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where μ and σ are the mean and the standard deviation in the log-10 space. The truncated log-normal 

distribution has two additional parameters: a minimum and a maximum value of aperture. Field studies 

and hydraulic tests found values of σ from 0.1 to 0.3, 0.23, and 0.47 (Dverstorp, Andersson 1989; Tsang 

et al. 1996; Snow 1970). To test the widest range of feasible values, we test values of σ from 0.1 to 0.6. 

More details can be found in our previous study (Gong, Rossen 2014). In order to focus on the influence 

of fracture aperture distributions on the dominant sub-network, except for the aperture distribution, all 

the other parameter distributions remain the same for all the cases tested in this study, including the 

fracture length, the orientation, etc.  

We assume that a fracture can be approximated as the slit between a pair of smooth, parallel plates; 

thus the aperture of each fracture is uniform. Steady state flow through the fractured region is 

considered (Fig. 3.1a). In this chapter, we consider  that  matrix permeability « fracture permeability, 

which is common in fractured reservoirs (van Golf-Racht 1982; Nick et al. 2011). The flow regimes of 

fractured rock mass can be defined by the fracture-matrix permeability ratio, especially, while the ratio 

is greater than 10
5
 - 10

6
, fractures carry nearly all the flow (Matthai, Belayneh 2004; Matthai, Nick 2009). 

Since we are interested in the non-uniform flow in well-connected fracture networks, the matrix is 

further assumed to be impermeable, so that fluid flow can take place only in the fracture network, 

similar to the flow regime between fractures and permeable rock mass with the fracture-matrix 

permeability ratio is greater than 10
5
 - 10

6
. For computing flow in discrete fracture networks, as in most 

numerical simulation methods, Darcy’s Law for steady-state incompressible flow is employed, and mass 

is conserved at each intersection of fractures. In our models, we induce fluid flow from the left side to 

the right side by applying a constant difference in hydraulic head across the domain, while all the other 

boundaries are impermeable. Mafic
TM

, a companion program of FracMan
TM

, is employed to simulate 

flow in the fracture networks.  

 

Figure 3.1 (a )One realization of the fracture network examined in this study. The size of the fractured region is 10 

m × 10 m × 0.01 m. The left and right boundaries are each at fixed hydraulic head; the difference in hydraulic head 

is 1m; water flows from left to right; the top and bottom edges are no-flow boundaries. (b) Dominant sub-network 

for one realization with a power-law aperture distribution (α = 1.001). (c) Dominant sub-network for one realization 

with a power-law aperture distribution (α = 2). 

 

3.3 Methodology 

As presented in the previous study, even in a well-connected fracture network, when the aperture 

distribution is broad enough, there is a dominant sub-network which can be a good approximation of 

the actual fracture network. This dominant sub-network is also strongly affected by the aperture 

distribution. The “dominant sub-network” is defined as the sub-network obtained by eliminating a 

portion of fractures while retaining 90% of the original-network equivalent permeability. The threshold 

of 90% equivalent permeability is chosen to eliminate fractures that are the ones do not carry much 

water and being eliminated. There is no special meaning for this 90% threshold, it could vary to tighten, 

or loosen, the criterion for membership in the dominant network. this study, our main interest lies in 
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examining the change of the characteristic sizes of matrix blocks as more fractures are eliminated. We 

also check the influence of aperture distribution (exponent α in a power-law distribution and standard 

deviation σ in a log-normal distribution) on the characteristic sizes of matrix blocks formed by the 

dominant sub-network. A Matlab program is employed to calculate the characteristic matrix block sizes. 

The equivalent matrix block size is employed to represent the average value of a series of matrix block 

sizes. 

The approach used to decide which portion of fractures to remove is as follows. Mafic
TM

 subdivides the 

fractures into finite elements for the flow calculations. The flow velocity at the centre of each finite 

element and the value of flow velocity × aperture (=Qnodal) can be obtained. Based on this value, we 

compute the average value (Q) of all the elements in each fracture. Q is then used as the criterion to 

eliminate fractures: fractures are eliminated in order, starting from the one with the smallest value of Q 

to the one with the largest Q. That is to say, the fractures that conduct the least flow are eliminated 

first. After each step, we first calculate the equivalent network permeability of the truncated network.   

Because the generation of the fracture network is a random process, an infinite number of fracture 

networks can be generated with the same parameter values for the density, the orientation, the 

fracture length and the aperture distribution. In this study, for each set of parameter values, we 

generate one hundred realizations.     

 

3.4 Characteristic Matrix Block Sizes 

The matrix blocks in fractured reservoirs can be of varying shapes and sizes. In order to quantitatively 

study the size and the recovery behavior of the matrix blocks, several parameters have been proposed 

(Cinco-Ley et al. 1985; Kazemi et al. 1992; Shouxiang et al. 1997; Rodriguez-N et al. 2001; Ranjbar et al. 

2012). In this study, we adopt the characteristic radius and the characteristic length.  

Zimmerman and Bodvarsson (Zimmerman, Bodvarsson 1995) argued that an irregularly-shaped matrix 

block can be modelled with reasonable accuracy as a spherical matrix block. The effective radius of the 

corresponding spherical block is defined as 

                                                       @ = 	 AB
C                                                                                 (3.4) 

Where V is the volume of the matrix block, and S is the surface area. They also proposed that in the 

early-time regime (shortly after a change in the boundary condition imposed at the block surfaces), a 

series of spherical blocks with variable radii can be modelled using uniform blocks with an equivalent 

radius given by: 

                                                                       @) =	�∑ B�
BE

FGH	 @G�	'�	
                                                                (3.5) 

where n is the number of matrix blocks, i refers to one matrix block, ri is the effective radius of that 

matrix block, Vi  is the volume of that matrix block and Vt is the total matrix volume. In this study, we 

adopt a similar idea to define the characteristic matrix-block radii of 2D fractured formations. The 

characteristic radius of each irregularly-shaped matrix block is defined as: 

                                                        @G = +C��
���                                                                                 (3.6) 

where i refers to one matrix block, Smi is the area of the matrix block, and Lmi is the perimeter of the two-

dimensional matrix block.  

The equivalent matrix-block radius is then defined as: 
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                                                                     @) =	�∑ C�
CE

FGH	 @G�	'�	
                                                               (3.7) 

where n is the number of matrix blocks, i refers to one matrix block, Si is the area of that matrix block 

and St is the total matrix area.   

The second parameter used in this study for representing the matrix-block size is the characteristic 

length, which was first proposed by Kazemi et al. (1992) and followed by other researchers (Shouxiang 

et al. 1997; Zhang et al. 1996; Mirzaei-Paiaman, Masihi 2013).  Kazemi et al. (1992) proposed a shape 

factor (Fs) of a single matrix block for the imbibition process, which considered the effect of matrix-block 

shapes and boundary conditions: 

                                                                     IJG =	 	
B�� 	∑

KL
0L

FMH	                                                                  (3.8) 

where i refers to one matrix block, Vmi is the volume of that matrix block, j refers to one face of that 

matrix block which is open to imbibition, Aj is the area of that face, dj is the distance from that face to 

the centre of the matrix block, and n is the total number of faces of the matrix block open to imbibition. 

This shape factor is claimed to be valid for anisotropic matrix blocks with irregular shapes (Heinemann, 

Mittermeir 2012). 

The characteristic length of an irregular matrix block NO is then defined as 

                                                                           NOG =	 	
PQR�

                                                                        (3.9) 

In fractured reservoirs, the matrix block is the main storage of oil and it feeds the surrounding fractures; 

thus the bulk volume of the matrix is vital to the recovery rate. Therefore, we believe that a volume-

weighted equivalent length is more reasonable than a number-based average value. An equivalent 

length for a series of matrix blocks is then represented as  

                                                                   N) =	�∑ B�
BE

FGH	 NOG�	'�	
                                                       (3.10) 

where i refers to one matrix block, Vi is the volume of that matrix block, Lci is the characteristic length of 

that matrix block, and Vt is the total bulk volume of the matrix blocks. 

In this study, the equivalent radius (re) and the equivalent length (Le) defined above are used to 

represent the average size of the matrix blocks in a fractured region. Only fractures that belong to the 

spanning cluster are included in calculating the matrix block sizes; the dead-ends are systematically 

removed from the network. Also, the matrix blocks containing impermeable boundaries (i.e. along the 

top and bottom of the region of interest) are not considered. Only the matrix blocks formed by the 

fractures which have fluid flow through them and the permeable left and right boundaries are taken 

into account.  

 

3.5 Results  

In this section, we present the results for the cases with power-law aperture distributions (from narrow 

to broad) and log-normal aperture distributions (from narrow to broad).  

3.5.1 Results for Cases with Power-Law Aperture Distribution 

Figure 3.2 shows the normalized area-weighted harmonic-average of characteristic matrix radii (r
b 

e ). The 

scatter in Figs. 3.2a-3.2c reflects the difference among the 100 realizations, and the average trend 

curves are shown in Fig. 3.2d. As presented in Fig. 3.2, as more fractures are eliminated, the length of 
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the backbone of the truncated fracture network (lb) decreases, while the equivalent radius of the matrix 

blocks (r
b 

e ) formed by the fracture network increases. The average trends are very close to each other for 

the cases with different values of power-law aperture distribution exponent α, no matter whether the 

apertures distribute broadly or narrowly (Fig. 3.2d). 

The normalized equivalent permeability of the truncated fracture network (Kb) is shown in Fig. 3.3 in 

which Kb/Ko is the ratio between the equivalent permeability of the dominant sub-network (Kb) and the 

equivalent permeability of the original fracture network (Ko), while lb/lo represents the ratio between the 

length of the backbone of the truncated fracture network (lb) and the total length of the original fracture 

network (lo). The results show that the dominant sub-network (the sub-network retaining 90% of the 

original equivalent network permeability after eliminating a portion of fractures) is strongly affected by 

the aperture distribution: for the broadest aperture distribution cases (α = 1.001), the flow-path length 

(lb) is roughly 35% of the total length of the original fracture network (lo), while for the narrowest 

aperture distribution (α = 6), the ratio of lb/lo is approximately 0.6 (Fig. 3.3). Correspondingly, as 

presented in Fig. 3.2d, the equivalent matrix radius for the dominant sub-network is on average about 

twice that for the original fracture network when α = 1.001 (the red dashed line), while the ratio is 

approximately 1.5 for the cases with the narrowest aperture distribution with α = 6 (the red dotted line). 

. 

 

Figure 3.2 Equivalent matrix radius of the dominant sub-network (r
b 

e ) normalized by the equivalent matrix radius of 

the original fracture network (r
o 

e ), plotted against the length of the backbone of the truncated fracture network (lb) 

normalized by the total length of the original fracture network (lo): power-law aperture distributions with  

(a) α = 1.001, (b) α = 2, (c) α = 6. Results of 100 realizations are shown for each value of α. The red curve is the 

average trend curve. (d) Average curves from (a-c), including additional values of α. Also shown are values of lb/lo 

for the sub-network retaining 90% of the equivalent network permeability and resulting values of r
b 

e /r
o 

e  for α = 1.001 

(red dashed line) and α = 6 (red dotted line), respectively. 

Figure 3.4 shows the characteristic radii (rc) of all the matrix blocks formed by the entire fracture 

network and the dominant sub-network for one realization for each value of α (Fig. 3.4). The vertical axis 

("CDF") shows for each case the portion of matrix with rc greater than the given value. In general, the 

characteristic radii of the matrix blocks formed by the dominant sub-network are larger than those 
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formed by the entire fracture network. The reason is that the dominant sub-network contains fewer 

number of the original fractures (Gong, Rossen 2014). 

 

Figure 3.3 Equivalent permeability of the dominant sub-network (Kb) normalized by the equivalent permeability of 

the original fracture network (Ko), plotted against the length of the backbone of the truncated fracture network (lb) 

normalized by the total length of the original fracture network (lo): power-law aperture distributions with  

(a) α = 1.001, (b) α = 2, (c) α = 6. Results of 100 realizations shown for each value of α. Red curve is the average 

trend curve. (d) average curves from (a-c), including additional values of α, also shown are values of lb/lo retaining 

90% of the equivalent network permeability for α = 1.001 and α = 6, respectively. 

 

Figure 3.4 Cumulative distribution function (CDF) for the characteristic radius of matrix blocks rc formed by the 

original fracture network (the bottom curve) and the dominant sub-network: power-law aperture distributions with 

α = 1.001 - 6. The results of one realization are shown for each value of α. 

The other parameter used in this chapter to represent the sizes of matrix of varying shapes is the 

characteristic length which is defined in Eq. 3.8 and Eq. 3.9. In Figure 3.5, we show the normalized 

equivalent matrix length (L
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e ) of the truncated fracture network, while in Figure 3.6, the characteristic 
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length (Lc) distribution of the matrix blocks formed by the original fracture network and the dominant 

sub-networks for one realization is presented. Similar results are obtained: for the cases with the 

broadest power-law aperture distribution, the equivalent length for the dominant sub-network is 

around twice that on average for the original fracture network. The ratio becomes smaller as the 

aperture distribution is narrower, and decreases to 1.5 for α = 6.  

 

Figure 3.5 Equivalent matrix length of the dominant sub-network (L
b 

e ) normalized by the equivalent matrix length of 

the original fracture network (L
o 

e ), plotted against the length of the backbone of the truncated fracture network (lb) 

normalized by the total length of the original fracture network (lo): power-law aperture distributions with  

(a) α = 1.001, (b) α = 2, (c) α = 6. Results of 100 realizations are shown for each value of α. The red curve is the 

average trend curve. (d) average curves from (a-c), including additional values of α. Also shown are values of lb/lo 

for the sub-network retaining 90% of the equivalent network permeability and resulting values of L
b 

e /L
o 

e  for  

α = 1.001 (red dashed line) and α = 6 (red dotted line), respectively. 

 

Figure 3.6 Cumulative distribution function (CDF) for the characteristic radius of matrix blocks Lc formed by the 

original fracture network (the bottom curve) and the dominant sub-network: power-law aperture distributions with 

α = 1.001 - 6. The results of one realization are shown for each value of α. 
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3.5.2 Results for Cases with Log-Normal Aperture Distribution 

Similar to the results for the cases with power-law aperture distributions, as more fractures are 

eliminated according to the flow-simulation results, the equivalent matrix-block radius and equivalent 

matrix-block length become larger for the cases with log-normal aperture distributions (Fig. 3.7 and  

Fig. 3.10), and the overall trends are almost not affected by the breadth of the aperture distribution  

(Fig. 3.7d and Fig. 3.10d). 

However, the dominant sub-network, defined in our previous study as the sub-network retaining 90% of 

the original equivalent network permeability after eliminating a portion of fractures, is strongly affected 

by the aperture distribution : for the broadest aperture distribution cases (σ = 0.6), the flow-path length 

is roughly 20% of the total length of the original fracture network (lb/lo = 0.2), while for the narrowest 

aperture distribution (σ = 0.1), the ratio lb/lo is approximately 0.6 (Fig. 3.8). Correspondingly, as 

presented in Fig. 3.7, the ratio between the equivalent radius of the dominant sub-network and that of 

the entire fracture network (r
b 

e /r
o 

e ) is around 3.5 when σ = 0.6 (the red dashed line in Fig.3.7d), which is 

the broadest aperture distribution examined here. The ratio r
b 

e /r
o 

e  decreases as the aperture distribution 

becomes narrower, and reaches roughly 1.5 for the cases with the narrowest aperture distribution with 

σ = 0.1 (the red dotted line in Fig.3.7d). The equivalent matrix length (L
b 

e ) presents similar behavior as 

the equivalent matrix radius (Fig. 3.10). 

 

Figure 3.7 Equivalent matrix radius of the dominant sub-network (r
b 

e ) normalized by the equivalent matrix radius of 

the original fracture network (r
o 

e ), plotted against the length of the backbone of the truncated fracture network (lb) 

normalized by the total length of the original fracture network (lo): log-normal aperture distributions with  

(a) σ = 0.1, (b) σ = 0.2, (c) σ = 0.6. Results of 100 realizations are shown for each value of σ. The red curve is the 

average trend curve. (d) Average curves from (a-c), including additional values of σ. Also shown are values of lb/lo 

for the sub-network  retaining 90% of the equivalent network permeability and resulting values of r
b 

e /r
o 

e  for σ = 0.1 

(red dotted line) and σ = 0.6 (red dashed line), respectively. 
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Figure 3.8 Equivalent permeability of the dominant sub-network (Kb) normalized by the equivalent permeability of 

the original fracture network (Ko), plotted against the length of the backbone of the truncated fracture network (lb) 

normalized by the total length of the original fracture network (lo): log-normal aperture distributions with  

(a) σ = 0.1, (b) σ = 0.2, (c) σ = 0.6. Results of 100 realizations shown for each value of σ. Red curve is the average 

trend curve, (d) average curves from (a-c), including additional values of σ, also shown are values of lb/lo retaining 

90% of the equivalent network permeability for σ = 0.1 and σ = 0.6, respectively. 

Similar to our approach with the cases of power-law aperture distributions, we select one realization for 

each value of σ, and examine the characteristic-radius and characteristic-length distributions of the 

original fracture network and the dominant sub-network. As presented in Figs. 3.9 and 3.11, the 

characteristic radius and the characteristic length of matrix blocks formed by the dominant sub-network 

are larger than those of the matrix blocks formed by the entire fracture network. 
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Figure 3.9 Cumulative distribution function (CDF) for the characteristic radius of matrix blocks rc formed by the 

original fracture network (the bottom curve) and the dominant sub-network: log-normal  aperture distributions 

with σ = 0.1 – 0.6. The results of one realization are shown for each value of σ. 

 

 

Figure 3.10 Equivalent matrix length of the dominant sub-network (L
b 

e ) normalized by the equivalent matrix length 

of the original fracture network (L
o 

e ), plotted against the length of the backbone of the truncated fracture network 

(lb) normalized by the total length of the original fracture network (lo): log-normal aperture distributions with  

(a) σ = 0.1, (b) σ = 0.2, (c) σ = 0.6, results of 100 realizations are shown for each value of σ. The red curve is the 

average trend curve. (d) average curves from (a-c), including additional values of σ, also shown are values of lb/lo 

retaining 90% of the equivalent network permeability and resulting values of L
b 

e /L
o 

e  for σ = 0.1 (red dotted line) and  

σ = 0.6 (red dashed line), respectively. 
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Figure 3.11 Cumulative distribution function (CDF) for the characteristic length of matrix blocks Lc formed by the 

original fracture network (the bottom curve) and the dominant sub-network: log-normal  aperture distributions 

with σ = 0.1 – 0.6. The results of one realization are shown for each value of σ. 

 

3.6 Discussion 

Naturally fractured oil reservoirs, like all reservoirs, are exploited in two stages: primary recovery and 

secondary recovery. The recovery mechanisms are different in these two processes. During primary 

production, the reservoir is produced by fluid expansion. The pressure drops rapidly in the fractures 

because of the high permeability, while, in contrast, the matrix remains at higher pressure. This creates 

a pressure difference between the fracture and the adjacent matrix block, and in turn, leads to flow of 

oil from the matrix to the fracture. In this scenario, as long as all the fractures are much more 

conductive than the matrix, one might expect that all connected fractures are conductive enough to 

bring oil that resides in matrix to the wells.  

In secondary recovery, since the fractures have much higher permeability than the matrix, water from 

an injection well invades the fractures much faster than the matrix. The water rapidly flows through the 

fracture network and surrounds a matrix block. If the matrix block has water-wet characteristics, water 

imbibes into the matrix block because of capillary pressure. In many cases, this is a counter-current 

imbibition process: water and oil flow in opposite directions, although co-current imbibition is faster and 

can be more efficient than counter-current imbibition (Ramirez et al. 2009). 

In this case, the cumulative oil recovery from matrix blocks surrounded by water in fractures can be 

scaled by an exponential equation (Aronofsky et al. 1958): 

                                                   S = ST(1 −	9�UV)                                                               (3.11) 

where R is the recovery, R∞ is the ultimate cumulative recovery, λ is a constant and t is time. Mattax and 

Kyte (1962) redefined the scale equation for imbibition recovery through experimental investigations: 

                                                                             S = ST(1 −	9�UWVW)                                                            (3.12) 

where 

                                                                              XY =	 Z[\
] � 6

�^��&'_ X                                                             (3.13) 

and tD is a dimensionless time, k is the permeability of the matrix block, φ is the porosity of the matrix 

block, σ is the interfacial tension, μw is the water viscosity, Lm is the matrix block size, and t is imbibition 

time.  
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Kazemi et al. (1992) further modified the Mattax and Kyte’s scaling equation by introducing the shape 

factor (FS), which considered the effect of matrix block shapes and boundary conditions. Eq.3.13 

becomes 

                                                                               XY =	 Z[\
] �6Q`

�^ '_ X                                                                (3.14) 

                                                                             XY =	 Z[\
] � 6

�^�a&'_ X                                                              (3.15) 

The definitions of the shape factor (FS) and the characteristic length (Lc) are described in Eqs. 3.8 and 

3.9. Thus, when the shape factor of a matrix block becomes smaller, or the characteristic length 

becomes greater, it takes a longer time to recover a certain portion of oil; the imbibition recovery 

process is slower. As presented in Figs. 3.6 and 3.11, in general, for all the cases the characteristic length 

(Lc) of the matrix blocks formed by the dominant sub-networks are larger than that of the matrix blocks 

formed by the entire fracture networks. This implies that the rate of oil recovery from the matrix blocks 

is overestimated if the entire fracture network is considered to take part in the waterflooding process. 

Eq. 3.15 is for one matrix block; here we apply this formula to the average value of a series of matrix 

blocks in order to approximately estimate the effect of matrix block sizes on the speed of oil recovery 

during the waterflooding process. For the cases with broadest aperture distributions (α = 1.001 for a 

power-law aperture distribution and σ = 0.6 for a log-normal aperture distribution), the characteristic 

length (Lc) of the matrix block formed by the dominant sub-networks are on average about twice and 

three times larger than that formed by the entire fracture networks, respectively (Fig. 3.5 and  

Fig. 3.10). This suggests that, for the cases with the broadest power-law aperture distribution, if the 

entire fracture network is considered to take part in the water-flooding process, the imbibition recovery 

rate from matrix blocks can be on average four times faster than if only the dominant sub-network is 

taken into account. For the cases with the broadest log-normal aperture distribution, it can be on 

average nine times faster. Even for the cases with the narrowest aperture distributions (α = 6 for a 

power-law aperture distribution and σ = 0.1 for a log-normal aperture distribution), the imbibition 

recovery process can be more than twice as fast.   

As discussed above, most water does not flow through the entire fracture network, but mainly through 

the dominant sub-network, and the rest portion of the fractures can be ignored without strongly 

affecting the overall flow. Considering the recovery mechanism of waterflooding, if the entire fracture 

network is taken into account, it means we assume the water flows through all the fractures. Then the 

sizes of matrix blocks formed by fractures and typical fracture spacing are smaller than in the dominant 

sub-network, which makes the estimated imbibition recovery process faster than it really is. Since dual-

porosity/dual-permeability models do not represent fractures explicitly, but assign average properties to 

grid cells, taking the entire fracture network into account may lead to an inaccurate shape factor, and in 

turn, give rise to inaccuracy for dual-porosity/dual-permeability simulation of the secondary recovery. 

The same argument would apply to EOR processes, which depend on penetration of the injected fluid 

through the fracture network, as waterflooding depends on water. 

This suggests that the shape factor for dual-porosity/dual-permeability simulation should depend on the 

process involved. Specially, it should be different for primary and for secondary or tertiary recovery. For 

primary recovery, all fractures should be included, while for waterflooding or EOR, only taking into 

account the dominant sub-network which carries almost all water might give a better estimation.  
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3.7 Conclusions  

Even in a well-connected fracture network, injected water does not flow through the entire fracture 

network; it mainly flows through a dominant sub-network which is strongly affected by the aperture 

distribution. The remaining fractures can be ignored without strongly affecting the overall flow through 

the fracture network. 

The typical fracture spacing and sizes of matrix blocks defined by the entire fracture network are 

generally larger than those formed by the dominant sub-work which carries most of the flow. If the 

typical fracture spacing used to calculate the shape factor for a waterflooding process accounts for the 

entire fracture network, it means the water is assumed to flow through all fractures  and all fractures 

participate in the imbibition process, which is not the case. The shape factor calculated by taking all 

fractures into account may lead to inaccurate dual-porosity/dual-permeability simulation of the water-

flood process. A similar argument applies to EOR; the injected EOR agent does not flow equally through 

all the fractures. 

This suggests that the shape factor for dual-porosity/dual-permeability simulation should be different 

for primary and for secondary recovery and EOR. Specifically, for primary recovery, all fractures should 

be included, while for the processes in which delivery of injected fluids plays a limiting role, such as 

secondary recovery and EOR, the characteristic matrix-block size utilised in simulation should be larger. 
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4.1 Introduction 

A significant amount of hydrocarbon reserves across the world resides in naturally fractured reservoirs 

(Saidi 1987). Accurate simulation of oil recovery is required for the efficient exploitation of these 

naturally fractured reservoirs. However, because of the complexity and limited information on the sub-

surface fracture networks, field-scale reservoir simulation requires the reservoir description to be 

simplified.  

If the fracture network is well connected, this is often done with a dual-porosity or dual-permeability 

(DP/DK) description. In the DP/DK concept, the fracture and matrix systems are treated as separate 

domains; interconnected fractures serve as fluid-flow paths between injection and production wells, 

while the matrix provides fluid storage for nearby fractures. Limited fluid flow between matrix blocks is 

allowed in dual-permeability models (Gilman, Kazemi 1988; Hill, Thomas 1985). The interaction between 

the fracture network and matrix is represented by an exchange function which is characterized by a 

shape factor (Barenblatt et al. 1960; Warren, Root 1963; Kazemi et al. 1976). During the last decades, 

discrete fracture models (DFMs) have attracted increasing research interest. In these models, the 

fracture geometry and complex flow patterns in fracture networks are simulated more accurately (Kim, 

Deo 2000; Karimi-Fard, Firoozabadi 2003; Karimi-Fard et al. 2004; Geiger et al. 2004; Matthäi et al. 2007; 

Li, Lee 2008). However, DFMs are typically computationally more expensive. Thus, although DP/DK 

models are much-simplified characterizations of naturally fractured reservoirs, they are still the most 

widely used methods for field-scale fractured-reservoir simulations, as they address the dual-porosity 

nature of fractured reservoirs and are computationally cheaper. To generate a DP/DK model, it is 

necessary to define the average properties for each grid block, such as porosity, permeability and 

matrix-fracture interaction parameters (typical spacing or shape factor). (Dershowitz et al. 2000). 

Therefore, the discrete fracture network considered to generate the DP/DK model parameters is crucial. 

If homogenization is applied, matrix-fracture exchange can be treated more accurately than in DP/DK 

simulations (Salimi, Bruining 2010), but, again, one needs a characteristic matrix-block size. However, if 

the fracture network shows a non-uniform flow, then characterizing fracture spacing or shape factor can 

be ambiguous. 

As we presented in a previous study (Gong, Rossen 2017), even in a well-connected fracture network, 

there is a dominant sub-network which carries almost all the flow, but it is much sparser than the 

original network. In this study we refer to fractures in the dominant sub-network as "primary" fractures, 

and the remaining fractures as "secondary". Primary fractures tend to be wider, but they are not 

necessarily the widest, longest or most highly connected fractures in the network (Gong, Rossen 2017). 

The flow-path length of the dominant sub-network can be as little as 30% of that of the corresponding 

original fracture network. This suggests that in secondary production or enhanced oil recovery (EOR), 

injected water or an EOR agent flows mainly along a small portion of the fracture network. In contrast, 

in primary production even relatively small fractures can be an efficient path for oil to flow to a 

production well.  

In fractured reservoirs, oil is produced by different recovery mechanisms. During primary production, oil 

is mainly recovered by fluid expansion. In secondary production, spontaneous imbibition is the 

dominant recovery mechanism in water-wet reservoirs. In primary recovery, production depends only 

on a path to the well, whereas in secondary recovery or EOR, it depends on the injected agent reaching 

the matrix. This difference suggests that relevant fracture spacing should be different for primary 

recovery and for waterflood or EOR (Gong, Rossen 2016).  We investigate this hypothesis in this study. 

 

4.2 Problem Description 

This study concerns the flow pattern within a fractured region (which can be seen as a grid block in a 

DP/DK model) in primary production or a waterflood process. Within a grid block, there is an 
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interconnected network of primary fractures. The grid defined by this network is inter-penetrated by 

secondary fractures (tertiary fractures are also included in some cases below). We examine a simplified 

representation of a unit cell within that region. Specifically, we represent a region bounded by primary 

fractures and penetrated by secondary fractures (also by tertiary fractures in some cases). In our simple 

model, the primary fractures are wider, though in reality the aperture is only one factor in determining 

which fractures carry most of the injected fluid (Gong, Rossen 2016).  

 

Figure 4.1 Schematic of the region of study. The fractured region studied is 15 m × 15 m, with injection and 

production wells placed at the bottom-left and the top-right corners, respectively. The injection well and production 

well are directly connected to primary fractures without contacting the matrix block. (a) The region is bounded by 

primary fractures, and penetrated by secondary fractures. The number of secondary fractures varies in different 

cases. In the case shown, Rn = 1/3. (b) Tertiary fractures are included in some cases. As in the cases examined 

below, there are as many tertiary fractures as primary and secondary fractures combined. 

The model employed here is illustrated in Fig. 4.1. It is a 2D, 15 m × 15 m region bounded by four 

primary fractures (with the same aperture) and penetrated by several secondary fractures. Tertiary 

fractures (narrower than secondary fractures) are also included in some cases. The injector and 

producer are connected to the primary fractures and placed at the bottom left and top right corner, 

respectively. The matrix permeability (km) in both directions is the same, i.e. 0.5 md. The directional 

permeability (kf) of the fractures along the fracture direction is given by d
2
/12, where d is the fracture 

aperture, while permeability in the direction perpendicular to the fracture is the same as the matrix 

permeability. The other petrophysical properties are listed in Table 1. The fracture cells are assigned 

zero capillary pressure and straight-line relative permeabilities. The matrix blocks are water-wet 

(Fig.4.2). The relative-permeability and capillary-pressure functions for the matrix are (Pooladi-Darvish, 

Firoozabadi 2000; Brooks, Corey 1964; Corey 1954)  

                                                                          bc? =	bc?? (1 − d)Fe   

                                                                          bcf =	bcf? dF^ 	  
                                                                          S ≡ C^�C^i

	�C^i�Cei	                                                                               (4.1) 

                                                                        jO(d) = 	−k ln(d)                                                                          (4.2) 

where Sw, Swr and Sor are water saturation, irreducible water saturation and residual oil saturation; k
o 

ro 

and k
o 

rw are the end-point oil and water-relative permeabilities, respectively, and B is a constant. Their 

values are listed in Table 4.2.  
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Figure 4.2 The relative permeability and capillary-pressure functions for matrix blocks in all the cases in this study.  

Table 4.1 Summary of petrophysical properties assumed in this study 

Parameter Units Value 

Matrix porosity fraction 0.2 

Fracture porosity fraction 1 

Oil viscosity Pa·s 0.0015 

Water viscosity Pa·s 0.00105 

Oil density kg/m
3
 835 

Water density kg/m
3
 999 

 

Table 4.2 Values of parameters in eqs. 4.1 and 4.2 adopted in this study 

Parameter Units Value 

no - 2 

nw - 4 

k
o 

ro - 0.75 

k
o 

rw - 0.2 

B Pa 1.01×10
5
 

 

4.3 Methodology    

In order to identify the roles played by primary and secondary or tertiary fractures, we examine the flow 

behavior in three cases: (1) all fractures present; (2) secondary or tertiary fractures excluded; and (3) all 

fractures present, but with the same average aperture (specifically, the arithmetic-average aperture of 

all the fractures in case (1)). In case (3), all fractures play a similar role, as is assumed in the traditional 

DP/DK concepts.  

The results are analysed according to three dimensionless groups.  

The Peclet number indicates the relative importance of advection and diffusion to the transport of a 

physical quantity in a given system. In this study, the intent is to represent the relative efficiency of 

matrix production and fracture flow: i.e., how conductive fractures are compared to matrix productivity. 

Details of our analysis can be found in the appendix. Considering the different oil-recovery mechanisms 
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in primary and secondary recovery (or EOR), we propose different Peclet numbers for the two oil-

recovery processes. The Peclet numbers proposed in this study are based on primary fractures.  

During primary production, oil is produced by fluid expansion. The pressure drops rapidly in the 

fractures because of the high permeability while, in contrast, the matrix remains at higher pressure. This 

creates a pressure difference between the fracture and the adjacent matrix block, and in turn, leads to 

the flow of oil from the matrix to the fracture.  

We define the Peclet number for primary production as the ratio of the time taken for the matrix to 

deliver 1 m
3
 fluid to the time for the adjacent fracture to transport 1 m

3
 fluid:  

                              j9 ≡ 	� �& �n⁄ 	
�&�]Ce�	oE	∆p' qr?N sb.	/	ℎ	∆�u⁄ vw                                                  (4.3) 

where 

                                                        x� =	 \�
]�OE                                                                             (4.4) 

is the hydraulic diffusivity, h is the thickness of the model, Ct is the total compressibility, Soi is the original 

oil saturation, Δp is the pressure difference, µo is the oil viscosity, kf is the fracture permeability, L is the 

matrix (fracture) length and d is the fracture aperture. When Pe is large, the surrounding fractures are 

highly conductive compared to the matrix, while a small Pe indicates that the fractures are not efficient.   

In a waterflood, we focus on counter-current imbibition. Injected water rapidly flows through the 

fracture network and surrounds a matrix block. If the matrix block is water-wet, the injected water 

imbibes into the matrix block because of capillary pressure.  

The Pe for counter-current imbibition is defined as follows:  

                                        j9 ≡ 	 y �& ��⁄
�&�](Ce��	Cei)z � 	

�.^{'w                                                            (4.5) 

where the capillary diffusion coefficient αm is defined as:  

                                           x|(df) ≡ 	−	\�
] =f}? 0~a

0C^                                                               (4.6) 

with the water fractional flow fw given by   

                                               =f =	 \i^ �^⁄
\i^ �^⁄ �	\ie �e⁄ 	                                                                    (4.7) 

where Pc is capillary pressure, krw is water relative permeability and kro is the oil relative permeability (all 

three are functions of Sw), and μw and μo are water and oil viscosity, respectively. Soi is the initial oil 

saturation, Q is the volumetric flow rate through the fracture and fwI is the water fraction entering the 

fracture. Coefficient αm is not a constant, but if one chooses an approximate average value for the 

recovery process, one can define a characteristic time. In this study, we apply a value of  

αm ≅ 1.9 x 10
-9

 m
2
/s, as discussed in the appendix.  

In addition, we consider two additional dimensionless groups: 

• The ratio of aperture d of primary and secondary fractures (Rd). We specify an aperture of 1 mm 

for the primary fractures and vary the aperture of secondary fractures in the cases with  

Rd ≤ 12.6. In order to avoid possible numerical problems with extremely narrow fractures, in the 

cases with Rd ≥ 12.6, we specify an aperture of 1 mm for all fractures and make up the 

difference by adjusting fracture permeability Kf. In these cases the fracture aperture we use in 

the ratio Rd is that corresponding to the same fracture transmissivity as in the simulation, i.e. (in 

m) [12 x 10
-3

 kf]
1/3

. Since fracture permeability is defined as d
2
/12, the ratio of permeabilities is 
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square of the corresponding ratio of aperture. For example, for Rd  = 10, the ratio of 

permeability is 100. If tertiary fractures are included, Rd3 is the ratio between the apertures of 

primary and tertiary fractures.  

• The ratio of the numbers of primary fractures to the total of primary and secondary fractures 

(Rn) in a unit cell. Rn = 1/3 approximately corresponds to our previous DFN study. 

 

4.4 Results 

4.4.1 Primary Production  

Since the Peclet number reflects the relative capacity of the fractures and the matrix to transport oil, we 

first present the flow patterns in the region studied with different values of the Peclet number, including 

some extreme cases in which the fracture permeability is very limited. The cumulative oil production 

and the pressure-distribution map are the bases for comparison. The results are presented as functions 

of dimensionless time tD, defined by Eq. A3 in the appendix. We compare the original fracture network, 

the network where all fractures have an average aperture of the fractures in the original network, and 

the network with secondary fractures excluded. Cumulative oil recovery is normalized by producible oil 

for the given process.  

Fig. 4.3 shows the results for Rd ≅ 2.5. This value of Rd approximates the results of our DFN study (Gong, 

Rossen 2017), i.e. that just 1/3 of the fractures account for 90% of the permeability of the fracture 

network. The pressure drops equally near both primary and secondary fractures for Pe = 1,000; all the 

fractures are conductive enough to transport the oil delivered by the surrounded matrix block. All the 

fractures contribute equally (figs. 4.3a and b) and the matrix limits oil production. For Pe = 10, all the 

fractures contribute nearly equally, but the fracture network limits oil production. For Pe = 0.1, even the 

primary fractures are unable to accommodate matrix productivity, and secondary fractures hardly 

matter. Oil recovery slows as Pe decreases, because the fractures are less able to transport oil produced 

by the matrix block (Fig. 4.4). For Pe = 1,000, treating all the fractures equally is a better approximation 

than excluding the secondary fractures; for Pe = 10 or less, it is more accurate to exclude the secondary 

fractures, the error in excluding the secondary fractures is not large.  
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Figure 4.3 Pressure distribution during primary production for different Pe, with Rd = 2.5 and Rn = 1/3.  

(a) Pe = 1,000, with all fractures; (b) Pe = 1,000, with all average fractures;  (c) Pe = 1,000, without secondary 

fractures; (d) Pe = 10, with all fractures; (e) Pe = 10, with all average fractures; (f) Pe = 10, without secondary 

fractures; (g) Pe = 0.1, with all fractures; (h) Pe = 0.1, with all average fractures;  (i) Pe = 0.1, without secondary 

fractures.  

 

 

Figure 4.4 Cumulative oil recovery during primary production for different Pe, Rd = 2.5 and Rn = 1/3. The cumulative 

oil recovery is normalized by the producible oil for the given pressure reduction.  
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Figure 4.5 Pressure distribution during primary production for different Rd with Pe = 10,000 and Rn = 1/3. 

 (a) Rd = 5.8, with all fractures; (b) Rd = 5.8, with all average fractures; (c) Rd = 43.1, with all fractures; (d) Rd = 43.1, 

with all average fractures; (e) Rd = 79.4, with all fractures; (f) Rd = 79.4, with all average fractures; (g) without 

secondary fractures. 

Fig. 4.5 shows the effect of Rd with Pe = 10,000. For Rd ≅ 5.8 or less, the secondary fractures play a 

similar role to the primary fractures; they carry oil produced by the matrix blocks to the production well 

as efficiently as the primary fractures do. As Rd increases to 43.1, the flow capacity of the secondary 

fractures is much less than the primary fractures (but still 2000 times more permeable than the matrix); 
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the secondary fractures still deliver oil, but play a less-important role than the primary fractures. For  

Rd ≅ 79.4, the secondary fractures only slightly affect oil recovery, and the flow pattern is very close to 

the case without secondary fractures.  

 

Figure 4.6 Cumulative oil recovery during primary production for different Rd with Pe = 10,000 and Rn = 1/3. The 

curves for models with all average fractures for all three values of Rd overlie each other. The cumulative oil recovery 

is normalized by the producible oil for the given pressure reduction.  

Fig. 4.6 compares the cumulative oil recovery of the original model, the model with all average fractures 

and the model without secondary fractures for the values of Rd in Fig. 4.5. The curves for the models 

with all average fractures for all the Rd values examined overlie each other. For Rd ≅ 5.8, the model with 

all average fractures provides a good approximation to the original model. As Rd increases (the 

secondary fractures become less permeable), the oil-production curve approaches that for the model 

without secondary fractures. For Rd ≅ 43.1, production is approximately midway between that with all 

average fractures and that excluding the secondary fractures. In summary, if the secondary fractures are 

much narrower than the primary fractures, and Pe is large, the secondary fractures can be ignored 

without much loss of accuracy for simulation of primary production. Otherwise, treating the primary and 

secondary fractures equally approximates the original fractured region well during primary production.  

Fig. 4.7 shows the effect of Rn (i.e., changing the number of secondary fractures) with Pe = 10,000 and  

Rd ≅ 2.5. The rate of oil recovery is heavily affected by Rn. But, again, the models that represent all the 

fractures as equally important provides a better approximation to the original models than those 

ignoring the secondary fractures.  

 

Figure 4.7 Cumulative oil recovery during primary production for different Rn with Pe = 10,000 and Rd = 2.5.  
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4.4.2 Secondary Production 

The Peclet number for waterflood as defined in this study depends on the injection rate and water 

fraction in the injected fluid (fwI). In most of the simulations below, fwI = 1. The relative amounts of water 

carried by the primary and secondary fractures are dominated by the ratios of fracture apertures (Rd) 

and number of fractures (Rn).  

As noted above, the case with Rd ≅ 2.5 and Rn = 1/3 approximates the flow distribution in our previous 

DFN study (Gong, Rossen 2017).  Fig. 4.8 shows the effect of Pe for this case. For Pe = 6,000, injected 

water flowing through both the primary and secondary fractures is able to supply all the water that the 

matrix can imbibe (Fig. 4.8a). The fluid exchange between the matrix and both primary and secondary 

fractures is counter-current imbibition. As the Peclet number decreases to 600, the injected water in the 

secondary fractures is unable to satisfy the adjacent matrix (Fig. 4.8d). The secondary fractures 

contribute to oil recovery by enabling co-current imbibition from the primary fractures, as confirmed by 

the examination of oil velocity at the face of the secondary fractures (not shown). Eventually, water 

reaches all the matrix blocks. For Pe = 60, the secondary fractures are less able to satisfy the adjacent 

matrix, but the matrix adjacent to the primary fractures expels oil by co-current imbibition. The role of 

co-current imbibition is evident in a comparison of Figs. 4.8g and i: at tD = 0.5 PV, oil is expelled more 

rapidly from the matrix adjacent to primary fractures, if secondary fractures are available to carry away 

the oil. The central matrix block, however, must wait for water from the secondary fractures. The 

secondary fractures provide a capillary barrier to co-current imbibition from the primary fractures.  

 

Figure 4.8 Oil saturation during secondary production for different Pe, with Rd = 2.5, and Rn = 1/3. (a) Pe = 6,000, 

with all fractures, (b) Pe = 6,000, with all average fractures, (c) Pe = 6,000, without secondary fractures,  

(d) Pe = 600, with all fractures, (e) Pe = 600, with all average fractures, (f) Pe = 600, without secondary fractures,  

(g) Pe = 60, with all fractures, (h) Pe = 60, with all average fractures, (i) Pe = 60, without secondary fractures.  
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Fig. 4.9 shows oil recovery for these cases. In all the cases, oil recovery is better approximated by 

treating all the fractures equally than by excluding secondary fractures. For Pe = 600 or less, however, 

treating all fractures equally overestimates oil recovery in the early stages. In none of the cases 

examined for the ratio of apertures based on our earlier DFN study (Gong, Rossen 2017) does simply 

excluding secondary fractures give a better approximation of oil recovery.  

 

Figure 4.9 Cumulative oil recovery during secondary production for different Pe, with Rd = 2.5 and Rn = 1/3. The 

cumulative oil recovery is normalized by the producible oil.  

We next hold the Peclet number at Pe = 6,000, and vary the aperture ratio Rd. Fig. 4.10 shows that for  

Rd ≅ 2.5, the injected water flows rapidly through both the primary and secondary fractures. Fluid 

exchange between the matrix and both the primary fractures and secondary fractures is by counter-

current imbibition. Primary fractures and secondary fractures play similar roles (Figs. 4.10a and b).  

Fig. 4.11 shows that the model with all average fractures gives a better approximation of the rate of oil 

recovery than the model without secondary fractures.  

For Rd ≅ 6.3, the injected water flows rapidly through the primary fractures, but slowly through the 

secondary fractures (Fig. 4.10c). For the matrix blocks bounded by both primary and secondary 

fractures, the injected water imbibes into the matrix block from the primary fractures, and some oil 

flows into the secondary fractures, allowing co-current imbibition. Therefore, although the secondary 

fractures do not carry much injected water, they still provide paths for oil to flow to the production well. 

Nevertheless, Fig. 4.11 shows that for Rd ≥ 6.3 or more, the model assuming that all the fractures have 

an average aperture considerably overestimates oil recovery; the model excluding secondary fractures 

provides a better approximation. 
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Figure 4.10 Oil saturation during secondary production for different Rd, with Pe = 6,000, Rn = 1/3. (a) Rd = 2.5, with 

all fractures, (b) Rd = 2.5, with all average fractures, (c) Rd = 6.3, with all fractures, (d) Rd = 6.3, with all average 

fractures, (e) Rd = 12.6, with all fractures, (f) Rd = 12.6, with all average fractures, (g) without secondary fractures. 
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Figure 4.11 Cumulative oil recovery during secondary production for different Rd, with Pe = 6,000, Rn = 1/3, and 

different Rd. The cumulative oil recovery is normalized by the producible oil. All the cases with all average fractures 

overlie each other. 

 

 

Figure 4.12 Oil saturation during secondary production for different Rn, with Pe = 6,000 and Rd = 2.5. (a) Rn = 1/2, 

with all fractures; (b) Rn = 1/2, all average fractures; (c) Rn = 1/6, with all fractures; (d) Rn = 1/6, all average 

fractures. 
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Figure 4.13 Cumulative oil recovery during secondary production for different Rn, with Pe = 6,000 and Rd = 2.5. The 

cumulative oil recovery is normalized by the producible oil.  

Figs. 4.12 and 4.13 show the effect of the ratio of numbers of primary and secondary fractures (Rn) for 

Pe = 6,000 and Rd ≅ 2.5. It is more accurate to treat all the fractures equally than to exclude the 

secondary fractures.    

The very definition of primary and secondary fractures, however, is affected by the truncation of the 

fracture distribution imposed by the length scale and the resolution of the fracture trace map. In 

reservoir simulation, considering the resolution of the fracture trace map of a field, as well as 

computational capacities, the set of fractures taken into account is truncated within a certain range. For 

a power-law distribution of apertures, very few of the narrowest fracture in the truncated distribution 

are among the primary fractures, and there would be many of these narrower fractures just below the 

aperture cutoff. For example, in our previous DFN study (Gong, Rossen 2017), the fractures are 

restricted to within a certain range of lengths (one order of magnitude) and aperture (three orders of 

magnitude). For broad aperture distributions, almost no primary fractures were near the lower limit of 

aperture. Thus if the distribution considered was extended to narrower fractures, there would be many 

narrower fractures in the distribution as a whole, with little change in the primary fracture network. We 

therefore examine next the role that excluded narrower fractures play during a waterflood process by 

including tertiary fractures in  the model. In this case, Rd3 is the ratio of the apertures of the primary and 

tertiary fractures.  

In Figs. 4.14 and 4.15, the aperture ratio between the primary and secondary fractures is 2.5, and the 

tertiary fractures are half as wide as the secondary fractures (Rd3 = 5). In all the cases, there are as many 

tertiary fractures as primary and secondary fractures combined. The tertiary fractures play a role in 

producing oil, although they are not as important as the primary and secondary fractures. The tertiary 

fractures become less important as the Peclet number becomes smaller. When Pe decreases to 60, the 

tertiary fractures are not very helpful. Considering all the fractures to be equally conductive 

overestimates the oil recovery for all Pe examined here. For Pe = 60, excluding the tertiary fractures 

leads to a more accurate prediction of oil recovery than treating them as equal to the other fractures. 
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Figure 4.14 Oil saturation during secondary production with tertiary fractures for different Pe. (a) Pe = 6,000,  

Rd = 2.5, Rd3 = 5, (b) Pe = 600, Rd = 2.5, Rd3 = 5, (c) Pe = 60, Rd = 2.5, Rd3 = 5, (d) Pe = 6,000, with all average 

fractures, (e) Pe = 600, with all average fractures, (f) Pe = 60, with all average fractures. 

 

 

Figure 4.15 Cumulative oil recovery during secondary production with tertiary fractures for different Pe, Rd = 2.5, 

Rd3 = 5. The cumulative oil recovery is normalized by the producible oil. 

Figs. 4.16 and 4.17 show a more extreme case, with the aperture ratio between the primary and tertiary 

fractures (Rd3) set at 34.2. The injected water flows through the primary and secondary fractures and 

imbibes into the adjacent matrix, and then pushes oil into the tertiary fractures by co-current imbibition. 

The tertiary fractures help in producing oil in this case.  
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Figure 4.16 Oil saturation during secondary production with tertiary fractures for different Pe. (a) Pe = 6,000,  

Rd = 2.5, Rd3 = 34.2, (b) Pe = 600, Rd = 2.5, Rd3 = 34.2, (c) Pe = 60, Rd = 2.5, Rd3 = 34.2. 

 

 

Figure 4.17 Cumulative oil recovery during secondary production with tertiary fractures for different Pe, Rd = 2.5, 

Rd3 = 34.2. The cumulative oil recovery is normalized by the producible oil. 

Figs. 4.18 and 4.19 show flow behavior of the fractured region with narrower secondary fractures  

(Rd ≅ 12.6), and the tertiary fractures with the same aperture as in the previous case (Rd3 ≅ 34.2). For 

Pe = 6,000 and 600, the cases with and without tertiary fractures show similar oil recovery after 2 PV of 

water injected. When Pe decreases to 60, the oil residing in the matrix adjacent to the primary fractures 

is produced as in the case without tertiary fractures, but the rest of the matrix, bounded by tertiary 

fractures, hardly produces any oil. Evidently the tertiary fractures act as capillary barriers, not helping, 

but limiting, oil production. In translating a fracture map to a DP/DK model, there are two issues: 

whether all the fractures contribute to recovery, and whether some may act as barriers to recovery.  

The effect of the unavoidable truncation of a measured fracture distribution requires further study. The 

wider the range of fractures included, the larger the number of secondary (and narrower) fractures 

included and the less accurate inclusion of all fractures on an equal basis in the definition of fracture 

spacing and shape factor. Those just before the truncation cut-off and excluded may have either no 

effect or a significant effect on the matrix-fracture exchange. 

0.0 0.5 1.0 1.5 2.0
0.0

0.2

0.4

0.6

0.8

1.0
  Pe = 6000, with secondary fractures
  Pe = 6000, with secondary and tertiary fractures
  Pe = 600, with secondary fractures
  Pe = 600, with secondary and tertiary fractures
  Pe = 60, with secondary fractures
  Pe = 60, with secondary and tertiary fractures

C
u

m
u

la
ti

ve
 o

il 
re

co
ve

ry
 [

-]

Pore volume water injected



58                                                                                                                                                      Chapter 4 

 

Figure 4.18 Oil saturation during secondary production with tertiary fractures for different Pe. (a) Pe = 6,000,  

Rd = 12.6, Rd3 = 34.2, (b) Pe = 600, Rd = 12.6, Rd3 = 34.2, (c) Pe = 60, Rd = 12.6, Rd3 = 34.2. 

 

Figure 4.19 Cumulative oil recovery during secondary production with tertiary fractures for different Pe, Rd = 12.6, 

Rd3 = 34.2. The cumulative oil recovery is normalized by the producible oil. 

 

4.4.3 Conclusions and Discussion  

In this chapter we consider the effect of heterogeneity on flow through a fracture network on the best 

characterization of the network for reservoir simulation. The results depend on the relative flow rates 

through primary and secondary fractures, represented here by the ratio of their apertures, the ratio of 

the number of primary and secondary fractures, and a Peclet number defined in the appendix. As shown 

in the appendix, this definition of a Peclet number works better than a previous published definition for 

the purpose of this study. This Peclet number depends on the matrix and fracture properties and, for 

waterflood, on the flow rate and water fraction in the fracture network. We focus in particular on the 

case with Rd ≅ 2.5 and Rn = 1/3, which approximates the flow distribution in our previous study (Gong, 

Rossen 2017). 

Our focus in this study is limited to well-connected fracture networks; all the secondary (and tertiary) 

fractures are connected to the primary fractures. In nature, a fracture network may not be so well-

connected, which would change the flow behavior of the fractured region in some aspects. In addition, 

in this study, we have disregarded gravity-driven flow between the matrix and fractures, which could 

change the scaling of matrix-fracture exchange in secondary and tertiary recoveries.   
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4.4.3.1 Primary Production 

For Rd ≅ 2.5, Rn = 1/3, the role that secondary fractures play during primary production can be divided 

into three categories according to the Peclet number.  1) For a very small Peclet number (Pe = 0.1), the 

secondary fractures play a minor role: even the primary fractures are unable to accommodate the 

matrix productivity. Excluding the secondary fractures gives a good approximation of the oil production, 

somewhat better than including them as equally conductive to primary fractures. The best shape factor 

(characteristic fracture spacing) in DP/DK simulation should then only account for the primary fractures. 

2) For somewhat larger Pe (10), the secondary fractures help in producing oil, but play a less important 

role than the primary fractures. Neither considering all the fractures equally nor excluding the 

secondary fractures provides a perfect approximation of the flow behavior of the fractured region. 3) 

For a larger Peclet number (Pe = 1,000), the secondary fractures are as important as the primary 

fractures. In other words, considering all the fractures to be equally conductive, as is assumed in a 

traditional DP/DK concept, provides a good approximation of the flow behavior of the fractured region. 

The effective fracturing or shape factor for a DP/DK simulation of a primary production process in this 

situation should consider both the primary and secondary fractures. 

For an even larger Peclet number (Pe = 10,000), the secondary fractures play a less important role as Rd 

increases. For Rd ≅ 5.8, the secondary fractures play a similar role to the primary fractures. As Rd 

increases to 79.4, the secondary fractures can be excluded without affecting oil recovery.  

For Pe = 10,000, Rd ≅ 2.5, considering all the fractures as equally conductive provides a good 

approximation for all the value of Rn examined. The smaller the value of Rn is, the worse the 

approximation given by excluding the secondary fractures.     

 

4.4.3.2 Waterflood 

For Rd ≅ 2.5 and Rn = 1/3, considering all the fractures as equally conductive approximates oil recovery 

better than excluding the secondary fractures, for all the values of Pe examined. But the secondary 

fractures are not as important as the primary fractures. For Pe = 600 and 60, the secondary fractures are 

important because they allow co-current imbibition from the primary fractures and the adjacent matrix 

blocks. Recovery with a heterogeneous fracture network is intermediate between that without 

secondary fractures and with all fractures equally conductive.  

For large Peclet number (Pe = 6,000) and Rd ≅ 2.5, recovery with the heterogeneous fracture network is 

nearly the same as with all fractures equally conductive. For Rd ≅ 6.3 or larger, secondary fractures carry 

little injected water, and matter little to oil recovery. In that case, excluding secondary fractures 

provides a better approximation than considering all fractures as equally conductive. The effective 

fracture spacing or shape factor for a DP/DK simulation of a waterflood process in this situation should 

consider only the primary fractures. 

For Pe = 6,000 and Rd ≅ 2.5, in which the injected water can flow through all the factures efficiently, all 

the fractures are nearly equally important for all the values of Rn examined.  

 

4.4.3.3 Effect of Truncation of the Fracture Distribution  

The fractures with an aperture below the cut-off of a truncated aperture distribution, referred to here 

as tertiary fractures, can be helpful in producing oil, although they are less important than the primary 

and secondary fractures (Figs. 4.14a and b, Figs. 4.16a and b, Figs. 4.18a and b). Tertiary fractures can 

also behave as capillary barriers and limit oil recovery (Fig. 4.18c).  
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In considering the effect of truncating a fracture aperture distribution, one must consider that excluded 

fractures could either help or hinder oil recovery. The effect of truncation of the fracture distribution on 

our conclusions deserves further study. 

 



 

 

 

 

 

5 
 

CONCLUSIONS AND DISCUSSION 
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5.1 Conclusions  

In this dissertation, we explore the implications of non-uniform flow in fracture networks for the dual-

porosity/dual-permeability simulation of fractured reservoirs, and the roles that different levels of 

fractures play in primary and secondary production. Here we present the major conclusions. 

 

5.1.1 Effect of Fracture Aperture Distribution on Dominant Sub-Network for Flow (Chapter 2) 

This chapter examines the effect of fracture aperture distribution on the dominant sub-network that by 

itself retains 90% of the effective permeability of the original fracture network. We focus on non-

uniform flow in well-connected fracture networks. A number of aperture distributions are tested: log-

normal and power-law distributions (from narrow to broad), and one where the aperture is proportional 

to the fracture length.  

• If the aperture distribution is broad enough (exponent α ≤ 2 for a power-law aperture 

distribution and log-standard deviation σ ≥ 0.4 for a log-normal aperture distribution), most of 

the fractures can be eliminated without significantly reducing the effective permeability. As the 

exponent α increases or the value of σ decreases, fewer and fewer fractures can be removed 

without significantly reducing the network equivalent permeability. 

• The importance of each fracture to the overall flow cannot be simply related to the fracture 

aperture or length. For the cases of both the log-normal and power-law aperture distributions, 

and that where the aperture is proportional to the fracture length, there are some fractures 

with a relatively narrow aperture that play a greater role in the overall flow than some others 

with a larger aperture. It is also true that some fractures with a relatively large aperture carry 

much less flow than most of the fractures.  

• Flow simulations are more effective at identifying the dominant sub-network that by itself 

retains 90% of the original permeability than eliminating fractures based on length, aperture, or 

number of intersections. Among those properties, eliminating fractures based on aperture is the 

most efficient criterion considered here, but it is not as efficient as using flow calculations.  

 

5.1.2 Effect of Non-Uniform Flow in Fracture Network on Shape Factor for Dual-

Porosity/Dual-Permeability Fractured-Reservoir Simulation (Chapter 3) 

In this chapter, we study the influence of the aperture distribution (exponent α in a power-law 

distribution and log-standard deviation σ in a log-normal distribution) on the characteristic sizes of 

matrix blocks formed by the dominant sub-network. We analyze the sizes of the matrix blocks formed 

by the entire fracture network and the corresponding dominant sub-network. The implications of this 

distinction for the dual-porosity/dual-permeability fractured reservoir simulation are as follows:  

• The typical fracture spacing and the sizes of matrix blocks defined by the entire fracture network 

are generally larger than those defined by the dominant sub-network which carries most of the 

flow.  

• If the typical fracture spacing used to calculate the shape factor for a waterflooding process 

accounts for the entire fracture network, it means that the water is assumed to flow though all 

fractures, which is not the case. The shape factor calculated by taking all fractures into account 

may lead to an inaccurate dual-porosity/dual-permeability simulation of the waterflood process. 

A similar argument applies to the EOR process.  

• These results suggest that the shape factor for a dual-porosity/dual-permeability simulation 

should be different for primary recovery and secondary recovery and EOR. In particular, for the 

process in which the delivery of injected fluids plays a limiting role, such as secondary recovery 

and EOR, the characteristic matrix-block size or the shape factor utilized in simulation should be 

larger than that used to simulate primary production.    
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5.1.3 Characteristic Fracture Spacing in Primary and Secondary Recovery for Naturally 

Fractured Reservoirs (Chapter 4) 

In this part of the work, we investigate in greater detail the effect of heterogeneity in the flow through a 

fracture network on the best characterization for a fractured-reservoir simulation of primary and 

secondary production. A simple representation of a fractured region, such as a grid block in a dual-

porosity/dual-permeability model, is employed. The results show that the roles of fractures depend on a 

dimensionless ratio of characteristic times for the matrix and fracture flow (Peclet number), and the 

ratio of flow carried by different fractures, represented in this model by the ratio of their apertures (Rd) 

and the ratio of the number of the primary and the secondary fractures (Rn). The cases with Rd = 2.5 and 

Rn = 1/3 approximate the results of our DFN study in Chapter 2, i.e. that just 1/3 of the fractures account 

for 90% of the permeability of the fracture network. Our focus in this study is limited to well-connected 

fracture networks; all the secondary (and tertiary) fractures are connected to the primary fractures. 

• For Rd = 2.5, Rn = 1/3, the secondary fractures play different roles during primary production 

depending on the Peclet number. The best shape factor for the simulation of primary 

production should not always take all the fractures into account. For a very small Peclet number 

(Pe = 0.1), the secondary fractures play a minor role; excluding the secondary fractures 

approximates oil production well. The best shape factor in this case should account only for the 

primary fractures. For a somewhat larger Pe (10), the secondary fractures help in producing oil, 

but play a less-important role than the primary fractures. Neither considering all fractures 

equally nor excluding the secondary fractures provides a perfect approximation of the flow 

behavior of the fractured region. For a larger Peclet number (1,000), the secondary fractures are 

as important as the primary fractures. In this case, considering all the fractures as equally 

conductive, as is assumed in a traditional dual-porosity/dual-permeability simulation, gives a 

good description of the flow behavior of the fractured region well.  

• In primary production, for an even larger Peclet number (10,000), the secondary fractures play a 

less important role as Rd increases, i.e., as the secondary fractures carry less flow. For Rd = 5.8, 

the secondary fractures play a similar role to the primary fractures. As Rd increases to 79.4, the 

secondary fractures can be excluded without affecting oil recovery.  

• For Pe = 10,000, Rd = 2.5, considering all the fractures as equally conductive provides a good 

approximation for all the values of Rn examined. The smaller the value of Rn is, the worse is the 

approximation given by excluding the secondary fractures.  

• In a waterflood, for most cases examined in this study, considering all the fractures as equally 

conductive approximates oil recovery better than excluding the secondary fractures.  

• However, for the cases with Rd = 2.5, Rn = 1/3, Pe = 600 and 60, the secondary fractures are 

important because they allow co-current imbibition from the primary fractures and the adjacent 

matrix blocks. Recovery with the heterogeneous fracture network is intermediate between that 

without the secondary fractures and with all fractures equally conductive.  

• For Pe = 6,000, Rn = 1/3, Rd = 6.3 or larger, the secondary fractures carry little injected water, 

and they matter little to oil recovery. In these cases, excluding the secondary fractures provides 

a better approximation than considering all the fractures as equally conductive. The fracture 

spacing or the shape factor for a dual-porosity/dual-permeability simulation of a waterflood 

process should consider only the primary fractures.  

• Fractures with an aperture below the cut-off of a truncated aperture distribution, referred to 

here as tertiary fractures, can be helpful in producing oil, although they are less important than 

the primary and secondary fractures. They can also behave as capillary barriers and limit oil 

recovery.  

• A new definition of Peclet number for matrix-fracture flow is presented in this thesis. This Peclet 

number depends on the matrix and fracture properties for primary production and, for 

waterflood, on the flow rate and water fraction in the fracture network. The results show that 

this definition of Peclet number works better than a previously published definition (Salimi, 
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Bruining 2010) for the purpose of characterizing the relative time scales of the fracture flow and 

the matrix-fracture fluid exchange.  

• We propose that the value of Pe characterizing a grid block in a simulation which includes  

Nb x Nb unit cells corresponds roughly to that we propose for a unit cell, divided by the number 

of unit cells (Nb x Nb) defined by primary fractures across a simulation grid block. 

 

5.2  Discussion  

Our focus in this study is limited to well-connected fracture networks. In nature, a fracture network may 

not be so well connected, which would change the flow behavior of the fractured region in important 

aspects.  

In addition, in this study, we have disregarded gravity-driven flow between the matrix and the fractures, 

which could change the scaling of the matrix-fracture fluid exchange in secondary and tertiary recovery.   

We take no explicit account of the effect of geo-mechanical stresses on the fracture length and aperture 

distributions. Horizontal fractures and layers are not considered in this study. In particular, we assume 

the fracture aperture is uncorrelated with the fracture direction. It would be important to include this 

effect in future studies. A strong correlation between the fracture aperture and the fracture direction 

might alter the conclusions of Chapter 2.  

Our study shows that sufficiently small fractures (smaller than the secondary fractures here) play an 

insignificant role in oil recovery except if they serve as capillary barriers. Any characterization of a 

fracture network includes a lower cut-off for the fracture aperture, explicitly or implicitly (based on the 

observability). Our results suggest that one should account for this cut-off in deciding which fractures to 

include in the characterization of matrix-block sizes in the dual-porosity/dual-permeability simulation of 

fractured reservoirs. 
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Definition of Peclet Number 

A Peclet number indicates the relative importance of advection and diffusion to the transport of a 

physical quantity in a given system. In this study, it represents the relative capacity for oil transport of 

matrix production and fracture flow: i.e., how conductive fractures are compared to matrix productivity. 

We propose separate versions of the Peclet number for the two oil-recovery processes, primary and 

secondary recovery. The Peclet number proposed here is based on the spacing of primary fractures, 

without secondary fractures. We consider a square matrix block, of size L x L, bounded by primary 

fractures, as illustrated in Fig. A.1a. Within a reservoir, this region represents a unit cell surrounded by 

other unit cells. Each fracture must accommodate flow from matrix blocks on both sides; therefore the 

fracture permeability we assign, which accommodates flow from the given matrix block, is only half the 

total fracture permeability. Then, because there are two (half-)fractures on opposite sides of the matrix 

in the two directions, the total flow capacity of the fractures surrounding the matrix block is equal to 

that of one fracture.  

 

Figure A.1 (a) Region of interest for defining Peclet number for matrix-fracture flow: a square matrix block bounded 

by primary fractures. (b) Schematic of a hypothetical simulation grid block containing 6 × 6 unit cells defined by the 

primary fractures.  
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Definition of Pe for Primary Recovery 

During primary production, oil is produced by fluid expansion from an initial pressure p to a reduced 

pressure (p-∆p). Pressure drops rapidly in the fractures, while the matrix initially remains at higher 

pressure. The pressure difference between fracture and adjacent matrix block drives oil from the matrix 

to the fracture. In comparing the flow capacities of matrix and fractures individually, we assume that 

each is unconstrained by the other. We assume a slightly compressible oil and incompressible water, 

which is at irreducible water saturation Swr, and matrix.  

A one-dimensional (1D) primary-production process in matrix bounded by parallel fractures at uniform 

and constant pressure on opposite sides, is governed by (White 1988; Bird et al. 2007; Akker, Mudde 

2014) 

                                                                               
�p
�V =	x� �&p

�
                                                                               (A.1) 

where 

                                                                              x� =	 \�
]�eOE                                                                                (A.2) 

where p is pressure, αh hydraulic diffusivity, km is matrix permeability, φ is matrix porosity, µo is oil 

viscosity, and ct is total fluid compressibility. We assume the oil is slightly compressible, so oil density is 

linearly related to pressure. Eq. A.1 is in the form of the well-known equation governing unsteady heat 

conduction in a solid (Bird et al. 2007; White 1988; Akker, Mudde 2014). Recovery in a square matrix 

block is governed by the square of dimensionless average pressure derived from Eq. A.1 (White 1988). 

Dimensionless time for this process is  

                                                                                XY =	�nV
�&    .                                                                              (A.3) 

We take the characteristic time tc for the process as that at a dimensionless time of 1; thus  

                                                                                 XO =	 �&
�n   .                                                                                (A.4) 

Production is very uneven during this period, with production much faster at the start than at the end. 

Moreover, this characteristic time extends well beyond the period when almost all oil is recovered; we 

discuss this further below. Virtually all the oil is recovered by this time; the volume of oil recovered is 

(N+ℎ�d?G<V∆�), where Soi is the initial oil saturation, φ matrix porosity, and h is the height of the system 

perpendicular to the cross-section shown in Fig. A.1. Averaged over the characteristic time, the time to 

produce one unit volume of oil is � �& �n⁄ 	
�&�]Ce�	oE	∆p'.   

For the fracture, we assume the same pressure difference ∆p across the length of the fracture; this gives 

a flow rate of �	\�	0	�	∆p
�e	� ', where kf is the fracture permeability and d is the fracture aperture. The 

product (kf d) is fracture transmissivity; for smooth slits, it equals (d
3
/12). The time for the fracture to 

transport one unit volume of oil is thus �	 �e�
\�	0	�	∆p�.  The Peclet number is the ratio of these two 

characteristic times: 

                                                         j9 ≡ 	� �& �n⁄ 	
�&�]Ce�	oE	∆p' qrN sb.	/	ℎ	∆�u⁄ vw    .                                              (A.5) 

If Pe is large, the surrounding fractures are relatively conductive compare to the matrix's ability to 

produce, while a small Pe indicates that the fractures are limiting on overall oil production.    
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Definition of Pe for Secondary Recovery by Counter-Current Imbibition 

In waterflood, we assume counter-current imbibition is the dominant oil-recovery mechanism. This 

process governed by Eq. A.1, with the coefficient αm defined as  

                                                                     x|(df) ≡ 	−	\�
] =f \ie

�e
0~�
0C^                                                             (A.6) 

with water fractional flow fw given by 

                                                                            =f =	 \i^ �^⁄
\i^ �^⁄ �	\ie �e⁄ 	                                                                 (A.7) 

where Pc is the capillary pressure, krw is the water relative permeability and kro is the oil relative 

permeability (all three are functions of Sw), and μw and μo are the water and oil viscosities, respectively. 

Coefficient αm is not a constant, but if one chooses an approximate average value for the recovery 

process (Rangel-German, Kovscek 2002), one can define a characteristic time using Eq. A.1. Again, 

virtually all oil is recovered during this time; the volume recovered is �N+ℎ�(d?G − d?c)� , where Sor is 

residual oil saturation.  

The fracture limits the process according to its ability to transport water to imbibe into the matrix and 

replace oil. The fracture supplies water at a rate (Q fwI), where Q is the volumetric flow rate through the 

fracture and fwI is the water fraction entering the fracture. As shown in Fig. A.2, the cumulative oil 

recovery is roughly the same for a constant volume of water injected into the fracture, for total flow 

rates varying by a factor of 20. The time for the fracture to provide one unit volume of water (which 

could displace one unit volume of oil from the matrix) is [1/(Q fwI)]. This leads to a Peclet number for 

counter current imbibition defined by 

                                                                  j9 ≡ y �& ��⁄
�&�](Ce��Cei)z �	 	

�	.^{	'w    .                                                      (A.8) 

 

 

Figure A.2 Cumulative oil recovery for different injected water fractions fwI with a constant water injection rate 

QfwI, Pe = 6,000, Rd = 2.5, Rn = 1/3. 
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We assume a constant coefficient αm for counter-current imbibition only to define a Peclet number, not 

in our simulations of oil recovery. Nonetheless, a useful average value would apply approximately over 

the period of recovery of most of the oil. Fig. A.3 compares solutions for fraction of recoverable oil still 

in place (ROIP) in a 2D recovery process with various constant values of αm to the numerical solution of 

the same process using the capillary-pressure and relative-permeability functions used in this chapter 

(solid line). In the numerical solution, fractures were flushed with large volumes of water so that 

fracture flow is not limiting on the rate of matrix recovery. A value of αm = 1.9 × 10
-9

 m
2
/s gives a 

reasonable fit over the period in which 80% of the oil is recovered (Fig. A.3a). The fit is not so good at 

short times (Fig. A.3b). Nevertheless, this value suffices to roughly characterize the time scales of the 

recovery process. 

 

Figure A.3 Fraction of remaining oil in place (ROIP) for a 2D recovery process calculated numerically (solid line) and 

with constant coefficient αm for different values of αm. (a) long time scale, during which most oil is recovered.  

(b) Short times. 

Salimi and Bruining (2010) proposed a definition of Peclet number for waterflood based on 

characteristic times without the volumes of oil residing in the matrix or fracture considered.  The 

characteristic time for the fracture is then the time to replace the fluids in the fracture, whatever the 

fracture volume. This gives  

                                                            j9 ≡ �N+ x|⁄ � �	+	�	0	�
�	.^{	'w    .                                                        (A.9) 

Fig. A.4 compares the Peclet number of Salimi and Bruining (2010) to that defined by Eq. A.8. In the 

reference case, Pe = 6,000, Rd = 2.5 and Rn = 1/3. In this case, the injected fluid flows rapidly through 

both the primary and secondary fractures. Primary and secondary fractures play similar roles. In the 

second case, fracture length (L), thickness (h), porosity (φ) and permeability (km) of matrix blocks change 

to keep the value of Pe in Eq. A.8 unchanged, while that of Salimi and Bruining doubles. In the third case, 

the value of Pe in Eq. A.8 decreases four fold, the value of Salimi and Bruining is unchanged. The 

capillary coefficient αm remains the same.  For the second case, the cumulative oil recovery is close to 

the oil recovery of the reference case. In the third case, the cumulative oil recovery at a given time 

decreases by approximately a factor of 4, approximating the change in Eq. A.8. Thus, the Peclet number 

defined in this study better fits the purpose of this study.  
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Figure A.4 Comparison of oil recovery as a function of time for different definitions of Peclet number. 

 

Interpreting the Magnitude of Pe 

As noted, even for a constant value of αh or αm, oil recovery is not constant in time for either primary or 

secondary recovery; the rate of oil recovery is much faster at the start than at the end. It is instructive to 

consider the time at which the flow capacities of matrix and fractures are comparable, as a function of 

Pe. 

We expect the fractures to be limiting only relatively early in the oil-recovery process, when production 

from matrix is greatest. For constant αm, for short dimensionless times tD (less than 0.05), oil production 

in 1D scales with √XY (Akker, Mudde 2014). The fraction of recoverable oil remaining in the square 

matrix region is approximately �1 − <	Px|X N+⁄ '+
, with C1 approximately 2.24 (obtained by a curve fit 

for the 1D recovery process in previous studies (Bird et al. 2007; Akker, Mudde 2014)) Therefore the 

rate of oil recovery from matrix, if unlimited by fracture flow capacity, is given by  

                          														�| =	− 0
0V Z(N+ℎ�d?G	<V	∆�)�1 − <	Px| X N+⁄ '+_  

                                              	= 	 (N+ℎ�d?G	<V 	∆�)2�1 − <	Px| X N+⁄ '<	 	
+ Px|/XN+                                (A.10) 

for primary production. The time at which this capacity equals the flow capacity of the matrix is likely to 

be short, for which the second term in brackets is approximately 1. Therefore   

                                                         �| ≈	 (N+ℎ�d?G 	<V	∆�)<	Px|/XN+   .                                                   (A.11) 

The time at which matrix flow capacity equals fracture flow capacity is therefore given by 

                                                     �	\�	0	�	∆p
�� ' ≈ 	 (N+ℎ�d?G	<V	∆�)<	Px|/XN+  .                                           (A.12) 

Rearranging,  

                                      Px| X N+⁄ ≈ 	 (N+ℎ�d?G	<V 	∆�)<	(x|/N+) �	 ��
\�	0	�	∆p� = <	 � 	

~)'                        (A.13) 
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                                                                              XY ≈ 5	j9�+                                                                            (A.14) 

where dimensionless time tD is defined in Eq. A.3. For instance, for Pe = 10, the fractures would be 

limiting on oil recovery for tD ≤ 0.05. The times in Figs. 4.3d-f are shorter than this, and matrix-fracture 

exchange has progressed further in matrix closer to the production well. For Pe = 1,000, primary 

fractures are limiting for tD ≤ 5 × 10
-6

, and in Figs. 4.3a-c matrix-fracture exchange is nearly uniform 

along the primary fractures. For secondary recovery, a similar derivation leads to the same result, albeit 

assuming a constant value of αm. 

 

Interpretation of Pe for Secondary Fractures 

We define Pe based on the network of primary fractures, and account for secondary fractures using the 

dimensionless ratio of fracture apertures Rd and number of secondary fractures Rn. It is instructive to 

compare the values of Pe that would obtain from consideration of matrix bounded by secondary 

fractures. The size of the region is now (L Rn) × (L Rn). For both primary production and waterflood, the 

flow rate in the definition of Eqs. A.5 and A.9 is reduced by a factor of roughly R
-3 

d . The value of Pe 

changes by a factor {(R
-1 

n )/[(R
-3 

d )]
-1

}. For the case Rn = 1/3 and Rd = 2.5, the value of Pe for a matrix block 

surrounded by secondary fractures is a factor (3/2.5
3
) ≅ (1/5) of that based on primary fractures. The 

fractures are somewhat less able to accommodate the flow capacity of the matrix. For larger values of 

Rd, the factor is smaller, e.g. 0.0015 for Rd = 12.6.   

 

Interpretation of Pe for Grid Blocks in Simulation 

In a dual-porosity or dual-permeability simulation, a grid block represents a region containing many unit 

cells as defined above. Suppose there are Nb x Nb unit cells in the simulation grid block and consider 

fracture flow in one of the coordinate directions (cf. Fig. A.1b, where Nb = 6). There are Nb fractures to 

carry away oil or provide water, but Nb
2
 matrix blocks to produce oil. The time to produce a unit volume 

of oil from the matrix grid block decreases by Nb
2
 while the time for fractures to provide a unit volume 

of water or carry away oil decreases by Nb; Pe decreases by a factor Nb. The pressure in the grid block 

and water fraction in the fractures is assumed uniform within a grid block in the dual-porosity approach, 

but both vary from grid block to grid block and with time for any grid block. At each time state a new 

boundary condition is applied to matrix blocks by the changing conditions in the fractures. The state of 

the matrix is the superposition of the effects of all these changes. We propose that the value of Pe 

characterizing a grid block in a simulation corresponds roughly to that we propose for a unit cell, divided 

by the number of unit cells defined by primary fractures across a simulation grid block.
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A large number of oil and gas reservoirs across the world are naturally fractured, from which a 

significant amount of hydrocarbons are produced. Naturally fractured reservoirs, like all reservoirs, are 

exploited in two stages: primary recovery and secondary recovery (sometimes followed by tertiary 

recovery, i.e. enhanced oil recovery (EOR)), with different recovery mechanisms. During primary 

production, the reservoir is produced by fluid expansion. In secondary production and EOR, since the 

fractures are much more permeable than the matrix, the injected water or EOR agent flows rapidly 

through the fracture network and surrounds the matrix blocks. Oil recovery then depends on efficient 

delivery of water or EOR agent to the matrix through the fracture network.  

Efficient exploitation of naturally fractured reservoirs requires accurate simulation. If the fracture 

network is well-connected, the simulation of naturally fractured reservoirs is often done with a dual-

porosity/dual-permeability description. In the dual-porosity/dual-permeability approaches, the fracture 

and matrix systems are treated as separated domains; the interconnected fractures serve as fluid flow 

paths between injection and production wells, while the matrix acts only as fluid storage, and these two 

domains are connected with an exchange term. Limited fluid flow between matrix blocks is allowed in 

dual-permeability models. In order to simulate the fracture geometry more realistically, and account 

explicitly for the effect of individual fracture on fluid flow, discrete fracture models have attracted 

increasing research interests in the last decades.  However, dual-porosity/dual-permeability models are 

still the most widely used methods for field-scale fractured-reservoir simulation, as they address the 

dual-porosity nature of fractured reservoirs and are computationally cheaper, although they are much-

simplified characterizations of naturally fractured reservoirs.  

To generate a dual-porosity/dual-permeability model, it is necessary to define average properties for 

each grid cell, such as porosity, permeability, matrix-fracture-interaction parameters (typical fracture 

spacing, matrix-block size or shape factor), etc.. Therefore, the fracture network used to generate the 

dual-porosity model parameters is crucial. Homogenization and other modelling approaches likewise 

require one to designate a typical fracture spacing. The hierarchical fracture model  also requires that 

one define effective properties of the matrix blocks and fractures which are too small to be represented 

explicitly. 

In the first part of this research (chapter 2), we systematically study the influence of the fracture 

aperture distribution on the dominant sub-network for flow. The “dominant sub-network ” is defined as 

the sub-network obtained by eliminating a portion of fractures while retaining 90% of the original 

network equivalent permeability. We model a two-dimensional fractured reservoir in which the matrix 

is impermeable and the fractures are well-connected. The fractures obey a power-law length 

distribution, as observed in natural fracture networks. For the aperture distribution, we test a number of 

cases: log-normal distributions, power-law distributions, and one case where the aperture is 

proportional to the fracture length. We find that even a well-connected fracture network can behave 

like a much sparser network when the aperture distribution is broad enough (power-law exponent α ≤ 2 

for power-law aperture distributions and log standard deviation σ ≥ 0.4 for log-normal aperture 

distributions). Specifically, most fractures can be eliminated leaving the remaining dominant sub-

network with 90% of the permeability of the original fracture network. We determine how broad the 

aperture distribution must be to approach this behavior and the dependence of the dominant sub-

network on the parameters of the aperture distribution. We also explore whether one can identify the 

dominant sub-network without doing flow calculations. 

In chapter 3, we focus on the influence of eliminating unimportant fractures which carry little flow on 

the inferred characteristic matrix-block size. As a follow-up study of chapter 2, we model a two-

dimensional fractured reservoir in which the fractures are well-connected, as in chapter 2. The fractures 

obey a power-law length distribution, as observed in natural fracture networks. For the aperture 

distribution, because information from the subsurface is limited, we test a number of cases: log-normal 

distributions (from narrow to broad), and power-law distributions (from narrow to broad). The matrix 

blocks in fractured reservoirs are of varying sizes and shapes; we adopt the characteristic radius and the 

characteristic length to represent the characteristic matrix-block size. We show how the characteristic 
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matrix-block sizes increase from the original fracture network to the dominant sub-network. During a 

waterflood or enhanced-oil-recovery (EOR) process, the production of oil depends on the supply of 

injected water or EOR agent. This suggests that the matrix-block size, or shape factor, used in dual-

porosity or dual-permeability waterflood or enhanced oil recovery (EOR) simulations or in 

homogenization should be based not on the entire fracture population but on the sub-network that 

carries almost all of the injected fluid (water or EOR agent). 

In chapter 4 we test the hypothesis, that the characteristic fracture spacing for the dual-porosity/dual-

permeability simulation of waterflood or EOR in a naturally fractured reservoir should account not for all 

fractures but only the relatively small number of fractures carrying almost all the injected water or EOR 

agent. In this chapter, we define the “primary” fractures as those in the dominant sub-network which 

carries most of the injected agent in previous chapters, and the secondary and, in some cases, tertiary 

fractures as the remaining fractures. In primary production even a relatively small fracture represents an 

effective path for oil to flow to a production well. This distinction suggests that the "shape factor" in 

dual-permeability reservoir simulators and the repeating unit in homogenization should depend on the 

process involved: specifically, it should be different for primary and secondary or tertiary recovery. In 

chapter 4, we test this hypothesis in a simple representation of a fractured region with a non-uniform 

distribution of fracture flow conductivities. We compare oil production, flow patterns in the matrix, and 

the pattern of oil recovery with and without the "secondary" fractures that carry only a small portion of 

injected fluid.  

The role of secondary fractures depends on a dimensionless ratio of characteristic times for matrix and 

fracture flow (Peclet number), and the ratio of flow carried by the different fractures. In primary 

production, for a large Peclet number, treating all fractures equally is a better approximation than 

excluding secondary fractures; the shape factor should reflect both primary and secondary fractures. For 

a sufficiently small Peclet number, it is more accurate to exclude the secondary fractures. For 

waterflood or EOR, in most cases examined, the appropriate shape factor or repeating-unit size should 

reflect both primary and secondary fractures. If secondary fractures are much narrower than primary 

fractures, then it is more accurate to exclude them. Yet-narrower "tertiary fractures" are not always 

helpful for oil production, even if they are more permeable than matrix. They can behave as capillary 

barriers to imbibition, reducing oil recovery. 

We present a new definition of Peclet number for primary and secondary production in fractured 

reservoirs that provides a more accurate predictor of dominant recovery mechanism in fractured 

reservoirs than the previously published definition. 
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Een groot aantal olie- en gasreservoirs over de hele wereld zijn van nature gescheurd. Hieruit wordt een 

significante hoeveelheid koolwaterstoffen geproduceerd. Zoals alle reservoirs worden van nature 

gescheurde reservoirs in twee stappen geëxploiteerd: primaire and secundaire winning (soms opgevolgd 

door tertiaire winning, d.w.z. verbeterde oliewinning (Engels: enhanced oil recovery EOR)) die 

verschillende methodes van olie- en gaswinning gebruiken. Tijdens de primaire productie worden de 

koolwaterstoffen gewonnen door expansie van de fluïda.  Tijdens de secundaire productie en EOR fase 

kan, vanwege de hogere permeabiliteit van de scheuren vergeleken met de matrix, geïnjecteerd water 

of EOR fluïdum snel door het scheurnetwerk stromen en wordt de matrix omzeild. De mate van 

oliewinning hangt dan af van de efficiëntie waarmee het water of EOR substantie binnen de matrix 

wordt gebracht vanuit het scheurnetwerk. 

Er is nauwkeurige simulatie nodig voor efficiënte exploitatie van natuurlijk gescheurd gesteente. Voor 

een goed verbonden scheurnetwerk wordt de simulatie van natuurlijk gescheurd gesteente vaak gedaan 

met duale-porositeit/duale-permeabiliteit beschrijving. Binnen de duale-porositeit/duale-

permeabiliteitsaanpak worden de scheur- en matrixsystemen als een apart domein behandeld. De 

verbonden scheuren dienen als stromingspaden tussen injectie- en productieputten en de matrix dient 

slechts als opslag van het fluïdum. De twee domeinen zijn met elkaar verbonden via een 

uitwisselingsterm. Beperkte stroming tussen de matrixblokken is toegestaan in duale-

permeabiliteitsmodellen. Om de scheurgeometrie realistischer te kunnen simuleren is de laatste 

decennia de interesse naar onderzoek van discrete scheurmodellen toegenomen.  Hierin wordt het 

effect van individuele scheuren op de stroming expliciet wordt meegenomen. Toch zijn de duale-

porositeit/duale-permeabiliteitsmodellen nog steeds het meest in gebruik voor simulaties van 

gescheurde reservoirs op de veldschaal, omdat ze de duale porositeit van de gescheurde reservoirs in 

acht nemen en computationeel goedkoper zijn, hoewel ze een vereenvoudigde beschrijving van 

natuurlijk gescheurde reservoirs zijn.  

Om een duaal-porositeit/duaal-permeabiliteitsmodel te maken is het nodig om gemiddelde 

eigenschappen te definiëren voor elke gridcel, zoals porositeit, permeabiliteit, matrix-scheur-interactie 

parameters (typische ruimte tussen de scheuren, matrixblokgrootte of vormfactor), etc. Daarom is het 

scheurnetwerk dat wordt gebruikt om de duale-porositeitsmodelparameters te maken cruciaal. Voor 

homogenisatie en andere modelaanpakken is het eveneens nodig om een typische ruimte tussen de 

scheuren vast te leggen. Voor het hiërarchische scheurmodel is het verder nodig om de effectieve 

eigenschappen te definiëren van de matrixblokken en scheuren die te klein zijn om expliciet te 

modelleren.  

In het eerste deel van dit onderzoek (Hoofdstuk 2) bestuderen we systematisch de invloed van de 

verdeling van de scheuropeningen op het dominante stroming sub-netwerk. Het “dominante sub-

netwerk is gedefinieerd als het sub-netwerk dat wordt verkregen door een deel van de scheuren te 

verwijderen terwijl 90% van de equivalente permeabiliteit van het originele netwerk wordt behouden. 

We modelleren een tweedimensionaal gescheurd reservoir waarin de matrix impermeabel is en de 

scheuren onderling goed verbonden zijn. De scheuren voldoen hierbij aan een machtsfunctie-verdeling, 

zoals die ook in natuurlijke scheurnetwerken optreden.  Voor de verdeling van de scheuropening testen 

we verschillende gevallen: log-normale verdelingen, machtfunctie-verdelingen en een geval waar de 

opening evenredig is met de scheurlengte. Hieruit concluderen we dat zelfs een goed verbonden 

network zich kan gedragen als een veel minder goed verbonden netwerk wanneer de verdeling van de 

scheuropeningen breed genoeg is (machtsfunctie-exponent α ≤ 2 voor machtsfunctie verdelingen van 

scheuropeningen en log standaard deviatie σ ≥ 0.4 voor lognormale verdelingen van scheuropeningen). 

De meeste scheuren kunnen hierbij worden verwijderd waardoor het dominante sub-netwerk overblijft 

met 90% van  de permeabiliteit van het originele scheurnetwerk. We bepalen hoe breed the verdeling 

van scheuropeningen moet zijn om dit gedrag te benaderen en de afhankelijkheid van het dominante 

sub-netwerk op de parameters van de verdeling van scheuropeningen. Verder onderzoeken we of het 

mogelijk is om het dominante scheurnetwerk te identificeren zonder stromingsberekeningen te doen.  
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In Hoofdstuk 3 richten we ons op de invloed van het verwijderen van onbelangrijke scheuren, die slechts 

een klein deel van de stroming bevatten, op de karakteristieke matrix-blokgrootte. Net als in Hoofdstuk 

2 modelleren we een tweedimensionaal gescheurd reservoir waarin de scheuren goed onderling 

verbonden zijn. De scheuren voldoen aan een machtsfunctie lengte verdeling, zoals die ook te vinden is 

in natuurlijke scheurnetwerken. Voor de verdeling van de scheuropeningen testen we een aantal 

gevallen, omdat informatie uit de ondergrond beperkt is. We testen log-normale verdelingen (van smal 

tot breed) en machtsfunctie verdelingen (van smal tot breed). De matrixblokken in gescheurde 

reservoirs hebben verschillende groottes en vormen. We kiezen een karakteristieke radius en lengte om 

de karakteristieke matrixblokgrootte te vertegenwoordigen. We tonen aan dat deze karakteristieke 

grootte toeneemt van het originele scheurnetwerk naar het dominante sub-netwerk. Tijdens een 

doorstroming met water of een EOR-proces hangt de olieproductie af van de toevoer van het 

geïnjecteerde water of EOR substantie. Dit suggereert dat de matrixblokgrootte, of de vormfactor, die 

wordt gebruikt in duale porositeits- of duale permeabiliteitssimulaties of in homogenisatie van water 

doorstromingen of EOR processen, niet moet worden gebaseerd op alle scheuren, maar op het sub-

netwerk dat het meeste van het geïnjecteerde fluïdum (water of EOR substantie) transporteert.    

 

In Hoofdstuk 4 testen we de hypothese dat de karakteristieke ruimte tussen de scheuren, voor een 

duale-porositeits/duale-permeabiliteitssimulatie van een doorstroming met water of EOR proces in een 

van nature gescheurd reservoir, niet afhangt van alle scheuren, maar alleen van het relatief kleine aantal 

scheuren die het meeste geïnjecteerde water of EOR substantie transporteren. In dit hoofdstuk worden 

de “primaire” scheuren gedefinieerd als diegene in het dominante sub-netwerk die het meeste van het 

geïnjecteerde fluïdum transporteren. De secundaire en, in sommige gevallen, tertiaire scheuren zijn de 

overgebleven scheuren. Binnen de primaire productie kan zelfs een relatief kleine scheur een effectief 

pad vormen voor olie om naar de productieput te stromen. Dit zorgt ervoor dat de vormfactor in duale-

permeabiliteitssimulatoren en de zich herhalende eenheid in de homogenisatie moeten afhangen van 

het proces dat gaande is. Er moet daarbij verschil zijn tussen de primaire, secundaire of tertiaire 

winning. In Hoofdstuk 4 testen we deze hypothese voor een eenvoudig model van een gescheurde zone 

met een niet-uniforme verdeling van stromingen in de scheuren. We vergelijken olieproductie, 

stromingspatronen in de matrix en het patroon van de oliewinning met en zonder de “secundaire” 

scheuren die slechts een klein deel van het geïnjecteerde fluïdum transporteren. 

 

De rol van de secundaire scheuren hangt af van de dimensieloze verhouding tussen de karakteristieke 

tijden voor stroming in de matrix en de scheuren (Peclet getal) en de verhouding van de stroming 

binnen de verschillende scheuren. Binnen de primaire productie en voor een groot Peclet getal is het 

een betere benadering om alle scheuren op dezelfde manier te behandelen dan om de secundaire 

scheuren uit te sluiten. De vormfactor moet rekening houden met zowel de primaire als de secundaire 

scheuren. Voor een klein genoeg Peclet getal is het echter nauwkeuriger om de secundaire scheuren uit 

te sluiten. Voor waterdoorstroming of EOR moet, voor de meeste hier onderzochte gevallen, de correcte 

vormfactor of de zich herhalende eenheidsgrootte rekening houden met zowel primaire als secundaire 

scheuren. Als de secundaire scheuren veel smaller zijn dan de primaire scheuren is het nauwkeuriger om 

ze uit te sluiten. Nog smallere “tertaire scheuren” zijn niet altijd nuttig voor de olieproductie zelfs als ze 

een hogere permeabiliteit hebben dan de matrix. Ze kunnen zich gedragen als capillaire barrières voor 

imbibitie waarmee de oliewinning wordt verlaagd.  
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