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SUMMARY

The present report describes a numerical method for transonic shock'
wave-boundary layer interaction on a plane wall or on a convex wall.
The method is based on the Bohning-Zierep model (Ref. 1), where a
turbulent boundary layer is perturbed by a weak normal shock wave
that exists in the external flow. The flow region along the wall

is divided into a relatively thick upper layer, where the flow is
considered to be inviscid and rotational, and a thin sublayer where
the flow is viscous. The problem of the diffusion inside these layers
of the jumps in flow quantities across the shock wave has been solved
analytically by Bohning and Zierep assuming a basic flow that is
perturbed by the presence of a weak shock wave. In the numerical
procedure the practical disadvantages of the analytical method are
avoided. These disadvantages are: its restriction to a limited form
of input data (a power law velocity profile) that allows the problem
to be handled analytically us1ng the very spec1f1c hypergeometrlc
functlons.

The present results appear completely within the band of the
analytical and of other numerical solutions. Compared to experimental
data on a plane wall as well as on a convex wall, a good agreement is
obtained as long as the Mach number in front of the shock wave does
not exceed unity too much, which may be expected s1nce 1t is inherent
to the perturbation model.
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LIST OF SYMBOLS

a speed of sound

Ce skinfriction coefficient

fi(x,y) _ linear elementafy function,used in the finite

fj(x,y) element method '

K von Karman constant

L half length of region of interaction

L half length of region of integration

M Mach number p

Mo Mach number of basic flow

MO* ’ velocity of basic flow, non—dimensiohalized by critical
speed of sound

p pressure

P, . pressure of basic flow, non-dimensionalized by critical
pressure

p' perturbation pressure, non-dimensionalized by critical
pressure

ptl total pressure ahead of shock wave

Pr Prandtl number

r coordinate; recovery factor

Rw radius of curvature of the wall

Red Reynolds number based on boundary layer thickness and
at critical flow conditions

S10 free parameter, eq. (17)

To temperature of basic flow, non-dimensionalized by
critical temperature

T' perturbation temperéture, non-dimensionalized by
critical temperature

u velocity component in x-direction

u' perturbation velocity component in x-direction, non-
dimensionalized by critical speed of sound

v velocity component in y-direction

v' perturbation velocity component in y-direction, non-
dimensionalized by critical speed of sound

wj(x,y) weight function, eq. (23)

X,y cartesian coordinates, Fig. 2, non-dimensionalized by
% and 6, respectively

X, X-coordinate of shock wave front

. 1 - %o

r 5
X.,Y. position of meshpoints
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Subscripts
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Superscripts
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third meshpoint after Xy

thickness of sublayer,non—dimensiohalized by boundary
layer thickness

exponent in power law velocity profile of Bohning and
Zierep (Ref. 1)

ratio of specific heats
thickness of incoming boundary layer of basic flow
thickness of viscous'sublayer

density of basic flow, non-dimensionalized by critical
density

perturbation density, non-dimensionalized by critical
density

wall shear stress
function defined in eq. (6); polar angle

@ in nodes of triangular elements

approximation of ¢

basic flow quantities

critical flow conditions
flow quantities immediately downstream of shock wave

perturbation quantities




1. INTRODUCTION

The problem of transonic shock wave-boundary layer interaction on a
curved wall has been treated analytically by Bohning and Zierep
(Ref. 1). They based their flow model on the experimental investigations..
made in 1946 by Ackeret, Feldmann and Rott (Ref. 2) who investigated
the interaction of a normal shock with the boundary layer on a curved
wall. The experiments indicated a singular behaviour of the pressure
gradient immediately downstream of the shock, manifesting itself in
.an expansion at the outer edge of the turbulent boundary. layer. This
rather pronounced expansion at the boundary layer edge decreased more
and more in a diffusion process when approaching the wall, and also
induced an upstream effect in the boundary layer.

The after-expansion is also observed in the inviscid case at the down-
stream foot of a normal shock wave on a curved surface. Oswatitsch
and Zierep (Ref. 3) solved this problem locally by means of a series
expansion of the perturbation potential in transonic- flow.

They found that at a convex surface the normal shock wave curves up-
stream (downstream at a concave surface), whereas at the foot the
curvature is logarithmically infinite. As a consequence the velocity
and the pressure gradient show a logarithmic singularity resulting in
an expansion immediately downstream of the shock wave.

Inspired by the similarity between the experimental results of
Ackeret, Feldmann and Rott (Ref. 2) and the inviscid solution of
Oswatitsch and Zierep (Ref. 3) Bohning and Zierep (Ref. 1) developed
an analytical method to introduce the Oswatitsch-Zierep singularity
into a viscous model. However, it should be mentioned that the
influence of viscosity in the Bohning-Zierep model is restricted to
a very thin sublayer, with a thickness of the order of one hundredth
of the actual boundary layer thickness.

The numerical method described in this report is entirely based on

the Bohning-Zierep flow model. The advantage of the computational -
approach may be found in the fact that a more general flow field can

be covered. Where Bohning and Zierep only could select a special initial
velocity profile of the boundary layer (a profile that nevertheless is
rather realistic) and yet gives rise to a rather complicated analysis,

a computational approach might generalize the problem without more
complexity.

Without going into the extensive description of the Bohning-Zierep
model the numerical method will be described in the following.

Where in the course of the numerical treatment a completion or
readjustment of the model and its equations is necessary ‘or possible
it is indicated. ) '



2. THE BOHNING-ZIEREP FLOW MODEL

2.1. General description

In their description of the normal shock wave-boundary layer inter-
action at a convex surface Bohning and Zierep (Ref. 1) consider a
region (Fig. 1) extending at a distance { upstream and downstream of
the shock wave. £ is of the order of the boundary layer thickness.

At the upstream end of the region a boundary layer of the basic flow
("Grundstrdmung", as they call it) enters the region with a prescribed
velocity profile. The thickness of the layer to the level where the
velocity is sonic is called §. The basic flow is considered independent
of the distance along the wall (wall curvature << 1). At the upper

edge 6 of the region a weak transonic shock wave ends.

The region is divided into two layers:
- a thick inviscid upper layer (the only "viscous"
effect is contained in the entering velocity
profile).
- a thin sublayer with thickness 6U
The thickness 6 depends upon the entering velocity profile and upon
‘the Reynolds number based on &. 6“ is unknown and has to be determined
in the analysis.

The flow is composed of the above mentioned basic flow and a perturbation

flow. The basic flow, which is known, remains when the shock wave
strength vanishes and, therefore, the perturbation flow, which has to
be determined, exists only because of the presence of the shock wave.
The perturbation quantities are considered small with respect to the
basic flow quantities.

2.2. Perturbation equations in the inviscid upper layer

According to Ref. 1 a cartesian coordinate system is introduced shown
in Fig. 2, and the perturbation equations for the inviscid upper layer
may be written as follows,

the continuity equation:

a(p_v')
Ju' * 3p' 2 o 1)
Poax ¥ Mo % * T oy =0 (1)
the momentum equations
*
am
* Ju' . o 1 9p' _
PMy 3x T PV T dy * Y 9x 0 (2)
* gv' 1 4 9p' _
pOMO —X—+?5—§,——O (3)

2 In this report the ratio /8 is maintained throughout the

computations

R

BT

i
g




the energy equation:

T+ (y -1 M u =0 (4)

the equation of state:

pPT' + P'T, = p' ' (5)

In these equations all flow quantities are non-dimensionalized by
their critical values; the subscript o and the prime denote basic
flow and perturbation flow quantities respectively. Thus, the non-
dimensional velocity components are given by Mo*_+ u' and v'; the
non-dimensional pressure, density and temperature by Po + P', P + P
Ty, + T' respectively. The x-coordinate is non-dimensionalized by £,

a characteristic length in x-direction, and the y-coordinate is non-
dimensionalized by §, the already mentioned y level where the flow
velocity is sonic.

2.3. The boundary value problem for the inviscid upper layer

By putting

o [0) _ '
5; (6)

accoxrding to Ref. 1, we obtain for egs. (1), (2), (3) the singlé
equation

2 2 daMm
L 2 L\" 2 o - ;
(5) oy ~ My =D e, - (3) M_ dy @, = o N

The region where eq. (7) is integrated is shown in Fig. 3 and the
boundary conditions are:
1. at x = + L the y component of the velocity vanishes, giving

I
o

¢ (-L,y) = @Y(L:Y) (8)

Y

2. at the outer edge, y = 1, of the upper inviscid layer the
perturbation pressure p' is prescribed by the external flow, thus

1 '
(DX(XIJ-) = - ?‘P (Xll) (9)

) ap' (leo)

3y = 0, so that, with

3. at the inner edge, y = Yor We have
egs. (3) and (8)



(Dy(x,yo) =0 (10)

Egs. (8) and (9) may be integrated at x = +L and at y = 1, resulting
in

®(-L,y) =C (11)
X

w(x,1) =C -‘% J p'(§,1) 4a& (12)
-L
L .

@(L,y) = C - %‘J p'(g,1) 4ag (13)
~-L ’

where C is an undetermined constant. Since, in the analysis only
derivatives of ¢ are concerned, C will not be determined.

The thickness Yo of the viscous sublayer, occurring in the boundary
condition given by eq. (10) is determined completely according to
Ref. 1, where y_ is given as '

$

- K
yO - 5 (14)

In Ref. 1 the x derivative of the wall shear stress T, is taken as the
characteristic physical quantity of which the parametric dependance
of Y, is analysed; this derivative is expressed as

2,
BTW 9°u (yo,x,O)

ox M 9xoy (15)

.
*

[+

Yo may be considered as the y position where the viscous and inviscid
forces balance; above y, the inertia forces are dominant, below that
value this is the case with the viscous forces.

Following Ref. 1 and taking into account the ratio-sfwe find

2 2
dp' (x,y ) ¥y M “(y) 4 2
u' (x,y) = é Re : 3 {_ s : (y > + % (y ) +

2776 dx 2 6 Yo Y,
2
M " (y)
o o'y _lty ' Y
+ g - Yy } +u (x,yo) v (16)

Now, y, is determined from egs. (15) and (16) by taking

2 .
9 [3%u'(0,0)) _ '
v { T3y } =0 (15')

TR




In the numerical compution, which will be dlSClssed later, eq. (15)
appeared to have such an extremum.

Yo is of the order of 1% of the boundary layer thickness.

For the pressure prescribed at the outer edge of the upper inviscid
layer downstream of the incident shock the expressions of the
Oswatitsch-Zierep theory (Refs. 1,3) are used. Translated into our
system for r = x, ¢ = 0 (Fig. 4) these equations read

ﬁf(x,l) = G'(o,1) - 1 {é&-— ézlégill} (2x 1n x + x)
T VL - #2(0,1) Yw X
- 48, u'(0,1) x (17)
ot __[A o) :
v'(x,1) = {Rw e } x (18)

-

where denotes quantities downstream of the shock wave, Ry, is the
radius of curvature of the wall and s1p9 is a free parameter matching
the boundary layer flow to the external flowfield.

Integrating the momentum equation (2) with respect to x we obtain

-

B'x,1) = =yp (1) m_*(1) {3'(x,1) - @' (0,1)} +

am *(1) X
- u>&—i——J@@1)£+§won (19)
Ypo, S dy ' '
. _

Since p (x,1) is not known a priori, it requires a known flow in the
inviscid upper layer (and vice versa, the determination of the flow
field in the inviscid upper layer requires known values of p ~at the
edge of the layer); it has to be determined iteratively.



3. COMPUTATIONAL METHOD

3.1. Boundary value problem

The boundary value problem given by egs. (7) and (10)-(13) together
with eq. (19) has been solved numerically for ¢ = 0 and, according
to Ref. 1, for §8/% has been taken the value 0.44. :

The numerical treatment allows a more realistic incoming velocity
profile at x = -L than the power law

o
Mo(y) =y

of Ref. 1. In the present case we adopted the turbulent boundary
layer profile

c.(-L) '
M *(y) =M *(1) [1 + lf—f———{l +r L;——11~/12(—L,1)} .

o] o

. {ln y - 0,5(1 + cos ﬂy)}] (20)

In eq. (20)

2 Ll
* / (y + 1) MO
M = ;

fo) 2
2+ (y-1) Mo

MO*(I) = 1, according to Ref. 1; K = 0.41, the von Karman constant;
cf(-L) is the skin friction coefficient at x = -L; r = 0.89, the

recovery coefficient for a turbulent boundary layer; M(-L,1) is the
Mach number of the complete flow (basic flow plus perturbation) at

the edge of the boundary layer at x = -L. The term ln y describes the

logarithmic law of the wall of the incoming velocity profile;
(1 + cos Ty) is the additional term of the Coles wake function, it

is multiplied by 0.5 in the case of a turbulent boundary layer without

pressure gradient.

3.2. Method of solution

For the solution of the problem a finite element approach has been
used, developed at the Department of Mathematics, University of
Technology Delft. The method consists of a package of Fortran sub-
routines applicable to boundary value problems to be solved with
finite element methods. This package called AFEP (A Finite Element
Package) is described in detail in Refs. 4, 5 and 6; only its
application on the present problem will be described shortly in this
report.

The computational domain is subdivided in a number of subdomains,




shown in Fig. 5, each with its own meshpoint distribution. The. number
of meshpoints n; on a subboundary i is indicated in Fig. 5 as i, ny;
the total number of meshpoints is 1121.

The shock wave at the outer edge of the inviscid upper layer is
confined within the interval ;Xo'xo (xg = 10~ 6y, then the numerical
pressure rise is almost discontinuous. :

In regions where the derivatives of flow quantities are large a fine
meshwidth has been chosen, thus :

1 - x 1 -y

X, = ———= and Yy = e

10

The streamwise dimension of the computational domain is taken as L= 10.
The computational domain now is divided 1nto'tr1angular elements, the
corner points of which are the above mentioned meshp01nts In each
p01nt the valie of w, @i, is considered; ¢h is known at the boundaries.
In the numerical procedure an approaching solution of ¢ is intrbduced

by

tDN(x,_y)

o~z

O, £, (x,y) e

i=1

where N = 1121 is the total number of meshp01nts, and f; (x,y) are
elementary functions, which are linear since each element covers
three meshpoints (Fig. 6). The functions £; (x,y) are given by

fi(xilyi) =1
fi(x,y)~= 0 for all other meshpoints given in Fig. 6
If eq. (21) is substituted into eq. (7) we obtain
L _ 2 L\T 2 _
(g) (wh)yy (Mo. -1 (¢N)xx <6) ﬁ;‘(¢&)y = R(p) (22)

The residual R({y) should be made as small as possible. This is"
- achieved by selecting N independent weight functions w (x,y) and to
require that

1 L
J J Wy (x,y) R {m (x,y)} dxdy =0, 3j=1,2,3 ...N (23)
Y

In most applications, for the weight functions the elementary functions



are taken; then; combining eqs. (21), (22) and (23) we obtain the
system of Galerkin equations :

N vk 2\ 82fi 2 82fi
so ] [ {f) el S
i=t oy ox
Y, ~L
2 aMm _ of
LY 2 o i _ .
(§) Lt e - )

where j =1, 2, 3 ... N.

Integration by parts in two dimensions of eq. (24) and using the
boundary conditions,eqs. (10)-(13), enables us to rewrite the
homogeneous system of (linear algébraic) Galerkin equations into an
inhomogeneous system. The right hand sides of these equations appear
by evaluation of the integrated terms in the expressions of the
integration by parts. (The AFEP subroutine procedure is such that the
process with the elementary functions and the integration by parts is
incorporated in the procedure.)

The solution of the inhomogeneous system of linear algebraic equations

provides the values @;, from which @, may be obtained. The problem,
involving an asymmetric band matrix, is solved by means of a profile -
LDU - decomposition method.

3.3. Application of the boundary conditions along the upper and
lower boundaries of the inviscid layer

3.3.1. The thickness of the viscous sublayer

In the numerical computation of the flow in the inviscid upper layer
the determination of the thickness y, of the viscous sublayer is
part of the solution procedure. According to Ref. 1 (see paragraph
2.3. of the present report) the determination of y, is part of the
solution process for the flow in the inviscid upper layer. Since

Yo = 0(0.01) (Ref. 1), as an initial guess y, is assumed to belong

to the interval 0.005 € yo € 0.015. Then, for three distinct values
of yo, displayed regularly in that interval, the boundary value
problem for ¢ is solved, yielding the u' and p' distributions along

the edge of the sublayer. Using the mixed derivative of eq. (16) we may

now compute

32u'(0,0)
9xdy

necessary for the determination of (yg)pin:s for each of the distinct
values of y,. Writing

32u'(0,0)
oxdy




as a quadratic function

324" (0,0) 2

ey = o * by, +c | . (25)

when a, b, ¢ are constants to be determined.

Then, the minimum value for Yo i1s found to be

b

(yO)min = - 2a

Of course (yo)pin should ly within the afore mentioned interval, if
this is not so the procedure should be repeated for a new interval

of yoi in our case this was not necessary. Depending on the partlcular
problem values between 0.013 and 0.014 were obtained.

3.3.2. The pressure applied at the outer edge of the inviscid upper
layer downstream of the shock wave

The perturbation pressure along the outer edge of the inviscid layer
in front of the shock wave has been taken, 51m11arly to Ref. 1, as
a constant, namely

2+ (y - 1) M1, ¥-1
' = n' (- = + ¥ - M (=L, Y__
p'(x,1) = p'(-L,1) { T F 1 } 1 (26)
Immediately downstream of the ;hock we then have
2 - X
Vx 1) = {2 oD ML) vyt 2L -y - 1)
Y Y + 1 Y +1
(27),

Since the AFEP subroutine for differentiation resembles central
differencing, it appears to give some difficulties in crossing
the shock wave in only one step, the pressure jump has been applied
in three steps, see Fig. 7. The corresponding values for ¢ used for
the differencing of eq. (6) are ‘

]

— 1 LI . . - _O
@(x,1) = - Y p'(-L,1) (x+L) , for X, <x < 3 (28)
Qx,1) = 1 -L,1) - p° 1 fi— ; 1) + p' 1 E.d
1) =g 1yp' (-L,/1) - p'(x_,1) 2% P L)+ ptix s 5

X
+ {p (-L,1) - p'(x ,1)} a - p'(-L,1) L] ’

»
wl g
o]

for - 59-s x < (29)



- 10 -

T R AT

s

and

— 1 ] xo
oix,1) = - Y [p'(xoll) x + p'(-L,1) L] , for 5—-S X € X (30)

Due to the very small value of X the pressure jump is almost
discontinuous.

The pressure at the outer edge of the inviscid layer further downstream
of the shock is computed using egs. (17), (18) and (19), where x has
been replaced by x- x . Downstream from the third meshpoint, being

the point situated the closest to the minimum in the after expansion

region, a linear pressure distribution is applied until at x = L the
pressure recovery is 90% of its value just over the shock wave.

The pressure applied at the outer edge of the inviscid layer downstream i
of the shock requires a known flow field of the inviscid upper layer. 5
Therefore this flow problem has also been treated iteratively; the .
first iteration sweep has been performed for a constant pressure,

according to eq. (27). o

The free parameter s in eq. (17) has taken into account by assuming
(in all iteration sweeps but the first)

p'(xiB,l) = % p'(-xo,l) + %—p'(xo,l) (31)

where X4i3 is the third meshpoint after x = Xx, mentioned above. The
assumption made in eq. (31) involved that in the iteration process,

p' (x,1) only changes in the region x5 € x < X;3. The expression has

been chosen since it appeared to give reasonable good agreement

to the experiments of Refs. 2 and 7; if necessary, other matching values
obtained from the inviscid outer flow field could be introduced.

3.4. Computation of perturbation préssure and perturbation velocity

In all meshpoints of the inviscid upper layer p' and v' are determined
from eq. (6) using the standard subroutines for differentiation of the
AFEP package. Eq. (2) is integrated with respect to X, knowing the

incoming velocity profile at x = -L given by eq. (20), this yields u'

* * X
1 My ) 7 g WM, )
u'(x,y) =-= p'(x,y) - < I v'(E.y) &g
Y u 2(y) w*eg &0W
o (¥ o (¥ ‘L
. o / c_(-L) _ N
+ M*(-Lll) [1 +‘% f—f-z—— {1 + r Y 2 1 MZ(-L,].)} .

.{ln y - 0,5 (1 + cos ﬂy)}] +
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.
B I s Yl P (-L.y) (32)

YT o h iy -1 M2 (y)

In eq. (32) the integral has been replaced by a Riemann-sum.

That the flow in the viscous sublayer cannot be considered as an
incompressible flow follows from the computed Mach number at y = Yor
the edge of the sublayer. For Yo = 0.01, M(-L,1) = 1.3 and cf(-L) =
0.002; M(-L,yo) = 0.6241.

The perturbation pressure p' in the viscous sublayer is obtained from
p' = p'(X,yy), which is known from the inviscid upper layer for an
established value of y, (see 3.3.1.), since 9p'/3dy in the sublayer

is assumed (Ref. 1) to be zero.

The horizontal perturbation velocity u' in the sublayer is computed
with eq. (16), knowing p'(x,yg5) and u'(x,yg).

The vertical perturbation velocity v' = 0, which, again, is an
assumption made in the flow model of Ref. 1.



4. RESULTS

4.1. Test cases

The numerical results of the present method (labeled: present results) are
compared with some experimental data: Ackeret, Feldmann and Rott (Ref.

2, labeled: A.F. & R.}) and Gadd (Ref. 7, labeled: Gadd).

The experiments of Ref. 2 have been made on a convex surface (R ™~ 0.5 m)
and those of Ref. 7 are carried out on a plane wall.

Test cases were:

2.63 . 10°  Fig. 8

A.F.&R.: 1. M= 1.3225, Re =
2. M=1.1897 , Re = 2.658 . 10°  Fig. 9
3. M =1.2618 , Re = 2.692 . 10°  Fig. 10
4. M =1.3121 , Re = 2.683 . 10°  Fig. 11

Gadd 5. M=1.12 , Re=6.0 . 10° Fig. 12
6. M=1.15 , Re =7.0 . 10°%  Fig. 13
7. M=1.27 , Re =10.0 . 10°  Fig. 14
8. M=1.34 , Re=19.3 . 10®  Fig. 15

M is the Mach number at the edge of the boundary layer just ahead of the
shock wave, and Re is the Reynolds number based on a characteristic
length. In Ref. 2 this length is taken as the length of the convex

plate where the experiments are made and in Ref. 7 it is the length
where the boundary layer develops in front of the shock wave.

4.2. Surface pressure distributions

All numerical surface pressure distributions of Figs. 8-15 show a
steeper pressure rise than the experimental pressure distributions.
This may be due to the implementation of the Bohning-Zierep model at
the edge of the inviscid sublayer and due to the virtual absence of
viscosity and of turbulence in the two layer system.

The analytical model of Bohning and Zierep (Fig. 8) shows an even
steeper pressure- rise since their pressure jump at the edge is
discontinuous, whereas in the present case it consists in three steps
(Fig. 7).

A difficulty occurred in plotting the numerical results as compared
to the experiments; it was not possible to determine accurately the
experimental shock wave position. Bohning and Zierep apparently have
chosen this position somewhat more downstream than we have done in
the present case. For equal shock wave position the curves of the
present numerical results and of the analytical Bohning-Zierep model
(Ref. 8) practically coincide.

The results of Messiter (Ref. 9) are only available downstream of the
shock (Fig. 8).

In Fig. 12 the pressure distribution is compared to the experimental
results of Gadd (Ref. 7) and to some (prominent) theoretical
distributions (Refs. 9, 10, 11). It should be mentioned that the
theoretical pressures of Inger and Mason (Ref. 10) and of Messiter
(Ref. 9) are in a better agreement with the initial pressure rise
than the present results. Probably their model description is
somewhat closer to the real viscous flow behaviour.




4.3. Pressure distribution in the inviscid upper layer

Figs. 16 and 17 represent the outsmearing of the applied steep pressure
jump at the edge of the layer, into the layer towards the wall. ’
Applying eq. (31) in order to match the outer flow conditions, means
that the magnitude of the after expansion is unaffected by the stream-
line curvature at the foct of the shock wave. This fact contradicts

of course the Oswatitsch-Zierep conjecture that this curvature should
influence the amount of expansion behind the shock wave. However, the
relation (31) is obtained by taking into account the measurements of-
Ref. 2 and 7. It is not unlikely that a different behaviour of the
after expansion at the foot of the shock wave than that given by the
Oswatitsch-Zierep model (for instance a less steep after-expansion) mlght
affect the slope of the pressure distribution at the wall.

It might be worthwhile to subject the two-layer boundary layer model

of Bohnlng and Zierep to such a new extern flow field.

4.4. Velocity profiles

The velocity profiles are plotted in Eigs. 18 and 19. There appears
quite a disagreement between the profilés of the experiments in Ref. 2
and the present numerical results (Fig. 18). The agreement is reasonable
in Fig. 19 where the present results are compared with the experiments
of Ref. 7. The reason for the difference may be sought in the much lower
Mach number of the latter case. Since the Bohning-Zierep model is based
on disturbance of a M = 1 basic flow a better result may be expected for
a Mach number closer to unity. Another reason for. the disagreement in
test case 1 may be the difficulty of finding a suitable incoming velocity
profile at x = -L since in the experiments of Ref. 2 there is no profile
given at that position. In addition there is some doubt about the

flow attachment in the test case 1 experiments.

Serious doubt exists where the numerical results show a reverse flow.
The flow model is not suitable for such a phenomenon, since the
hypothesis of "perturbation of a basic flow" is violated. However, it
might indicate that the flow model breaks down and one has to look for
a different approach, as Bohning and Zierep do in Ref. 12.

Figs. 20 and 21 show the position of the sonic line with respect to x,
i.e. with respect to the distance along the wall made non-dimensional
with the boundary layer thickness. The course of the sonic line shows
the same behaviour as in the Bohning and Zierep solution (Ref. 1).
From x = -1 downstream it runs towards y = 1 at x = O,

4.5. Distribution of the vertical velocity component

From Figs. 22 and 23 it may be seen that the entire inviscid upper

layer has an upwash, which increases with increasing distance from

the wall, accumulating into a peak at the foot of the shock wave. Such

a peak not only involves an oblique shock wave, but also a kinked
streamline. These features have not been taken into account in the initial
boundary conditions. For instance the pressure jump through the shock

wave was taken using normal shock relations. This could be argumented

by the results for v, because v << u.



Another more severe restriction, also occurring in the analytical
results of Ref. 1, is the fact that an oblique shock does not have a
singularity at its foot. There is, however, always the possibility of
an after-expansion that is regular in the sense that the streamline
behaviour behind the shock is convex, as shows the v-distribution in
Figs. 22 and 23. It would be interesting to change-the flow model
such that instead of the Oswatitsch-Zierep singularity a regular
expansion wave is applied as for instance Inger suggests (Ref. 13).

The results in Figs. 22 and 23 are asymmetric with respect to x = 0.
According as one goes deeper into the boundary layer the point of
maximum upwash moves upstream. :

At y = yo. the edge of the viscous sublayer, v should be 0 as the
boundary condition there states. A drawback of the used AFEP computation
procedure is that the Neumann conditions are better satisfied when the
meshwidth in vertical direction is decreased in the vicinity of the
boundary. In the present computercode we have not tried the utmost.

At x = + 1 the vertical velocity component is practically zero (0.00005),

suggestihg that the original Bohning and Zierep assumption to confine the
problem on the interval -1 € x < 1 is good enough.

4,.6. Streamline distribution

The streamlines shown in Figs. 24 and 25 are computed by integrating
the flow directions, or rather by following the flow directions from
point to point, knowing the velocity components. Only those streamlines
are computed which remain within the inviscid upper layer on the
interval -0.2 < x < 0.2. In test case 1 this is the streamline entering
at x = ~0.2 at y = 0.967 and in test case 5 it is the streamline at

y = 0.986.




5. CONCLUDING REMARKS

- The implementation of the Bohning and Zierep model (Ref. 1) into a
numerical treatment of the shock wave-boundary layer interaction
problem appears to deliver a better tool for the description, and,
taking into account the larger applicable variety of flow paraméters,
a more powerfull method than the analytlcal treatment glven in
Ref. 1.

In addition a numerical method does not seem to :be more complicated,
since the use of hypergeometric functions, often involved in-
analytic transonic flow problems, is -rather difficult also. -

- The agreement of the method with existing theories and with
experiments is reasonable, although the agreement between
theoretical results is better than with experiments. This may be
due to the insufficient viscous modelllng not to speak about the
modelling of the turbulence. . .

- There is a problem in the Bohning and Zierep approach in that the
initial normal shock wave becomes oblique during the numerical
development of the flow as it iterates to the final solution:

As a consequence the Oswatitsch-Zierep singularity vanishes and so

does the accompanying after-expansion. However, also oblique shock

waves can be succeeded by expansion regions, therefore it would

be interesting to apply from the beginning such an outer flow and

take, as a first guess, a curved, or even kinked, ‘streamline at the

foot of the shock. Such a starting point may throw some light on the
point of the good agreement between the results of the present

method and the experimental results for plane walls (Gadd, Ref. 7),
since the oblique shock-after expansion flow also occurs at plane walls.
The diffusion of such an initial expansion would be worthwhile to compare
with the results obtained by the normal shock wave model of
Oswatitsch~Zierep. -

- If the outer flow field is known and the shock wave-boundary layer
interaction is not that severe that it causes flow separation, the
Bohning-Zierep model may easily incorporated in numerical codes in
order to solve the entire transonic flow problem around aerofoils.
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“Fig.4 : Coordinate sysféms used for the application of the Oswatitsch-
Zierep shock wave (Ref.7}.
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M=1.1897, Re = 2.658-10°.
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