Searched for:
(1 - 20 of 193)

Pages

document
Wapenaar, C.P.A. (author), Brackenhoff, J.A. (author), Thorbecke, J.W. (author)
The earthquake seismology and seismic exploration communities have developed a variety of seismic imaging methods for passive- and active-source data. Despite the seemingly different approaches and underlying principles, many of those methods are based in some way or another on Green's theorem. The aim of this paper is to discuss a variety of...
journal article 2019
document
Reinicke Urruticoechea, C. (author), Wapenaar, C.P.A. (author)
The homogeneous Green’s function is the difference between an impulse response and its time-reversal. According to existing representation theorems, the homogeneous Green’s function associated with source–receiver pairs inside a medium can be computed from measurements at a boundary enclosing the medium. However, in many applications such as...
journal article 2019
document
Wapenaar, C.P.A. (author)
The matrix-vector wave equation is a compact first-order differential equation. It was originally used for the analysis of elastodynamic plane waves in laterally invariant media. It has been extended by various authors for laterally varying media. Other authors derived a similar formalism for other wave phenomena. This paper starts with a...
journal article 2019
document
Shirmohammadi, F. (author), Weemstra, C. (author), Draganov, D.S. (author), Wapenaar, C.P.A. (author)
poster 2019
document
Almagro Vidal, C. (author), van der Neut, J.R. (author), Wapenaar, C.P.A. (author)
Time-lapse changes in the subsurface can be analyzed by comparing seismic reflection data from two different states, one serving as the base survey and the second as the monitor survey. Conventionally, reflection data are acquired by placing active seismic sources at the acquisition surface. Alternatively, these data can be acquired from passive...
journal article 2019
document
Zhang, L. (author), Thorbecke, J.W. (author), Wapenaar, C.P.A. (author), Slob, E.C. (author)
We have developed a scheme that retrieves primary reflections in the two-way traveltime domain by filtering the data. The data have their own filter that removes internal multiple reflections, whereas the amplitudes of the retrieved primary reflections are compensated for two-way transmission losses. Application of the filter does not require...
journal article 2019
document
Wapenaar, C.P.A. (author), Reinicke Urruticoechea, C. (author)
Given the increasing interest for non-reciprocal materials, we propose a novel acoustic imaging method for layered non-reciprocal media. The method we propose is a modification of the Marchenko imaging method, which handles multiple scattering between the layer interfaces in a data-driven way. We start by reviewing the basic equations for wave...
journal article 2019
document
Meles, G.A. (author), van der Neut, J.R. (author), van Dongen, K.W.A. (author), Wapenaar, C.P.A. (author)
Wavefield focusing is often achieved by time-reversal mirrors, where wavefields emitted by a source located at the focal point are evaluated at a closed boundary and sent back, after time-reversal, into the medium from that boundary. Mathematically, time-reversal mirrors are derived from closed-boundary integral representations of reciprocity...
journal article 2019
document
Brackenhoff, J.A. (author), Thorbecke, J.W. (author), Wapenaar, C.P.A. (author)
We aim to monitor and characterize signals in the subsurface by combining these passive signals with recorded reflection data at the surface of the Earth. To achieve this, we propose a method to create virtual receivers from reflection data using the Marchenko method. By applying homogeneous Green's function retrieval, these virtual receivers...
journal article 2019
document
Wapenaar, C.P.A. (author), Reinicke Urruticoechea, C. (author)
Acoustic imaging methods often ignore multiple scattering. This leads to false images in cases where multiple scattering is strong. Marchenko imaging has recently been introduced as a data-driven way to deal with internal multiple scattering. Given the increasing interest in non-reciprocal materials, both for acoustic and electromagnetic...
journal article 2019
document
Wapenaar, C.P.A. (author), Brackenhoff, J.A. (author), Thorbecke, J.W. (author), van der Neut, J.R. (author), Slob, E.C. (author), Verschuur, D.J. (author)
A virtual acoustic source inside a medium can be created by emitting a time-reversed point-source response from the enclosing boundary into the medium. However, in many practical situations the medium can be accessed from one side only. In those cases the time-reversal approach is not exact. Here, we demonstrate the experimental design and...
journal article 2018
document
Meles, G.A. (author), Wapenaar, C.P.A. (author), Thorbecke, J.W. (author)
Marchenko redatuming is a novel scheme used to retrieve up- and downgoing Green's functions in an unknown medium.Marchenko equations are based on reciprocity theorems and are derived on the assumption of the existence of functions exhibiting space-time focusing properties once injected in the subsurface. In contrast to interferometry but...
journal article 2018
document
Wapenaar, C.P.A. (author), Staring, M. (author)
In seismic monitoring, one is usually interested in the response of a changing target zone, embedded in a static inhomogeneous medium. We introduce an efficient method that predicts reflection responses at the Earth's surface for different target-zone scenarios, from a single reflection response at the surface and a model of the changing...
journal article 2018
document
Harmankaya, U (author), Kaslilar, A. (author), Wapenaar, C.P.A. (author), Draganov, D.S. (author)
Unexpected geological structures can cause safety and economic risks during underground excavation. Therefore, predicting possible geological threats while drilling a tunnel is important for operational safety and for preventing expensive standstills. Subsurface information for tunneling is provided by exploratory wells and by surface...
journal article 2018
document
Hartstra, I.E. (author), Almagro Vidal, C. (author), Wapenaar, C.P.A. (author)
Virtual Green's functions obtained by seismic interferometry (SI) can provide valuable reflectivity data that can complement tomographic inversion schemes. However, virtual reflections are affected by illumination irregularities that are typical of earthquake-induced wavefields recorded by the receiver array. As a consequence, irregular...
journal article 2018
document
Alkhimenkov, Y. (author), Brackenhoff, J.A. (author), Slob, E.C. (author), Wapenaar, C.P.A. (author)
Marchenko Imaging is a new technology in geophysics, which enables us to retrieve Green's functions at any point in the subsurface having only reflection data. One of the assumptions of the Marchenko method is that the medium is lossless. One way to circumvent this assumption is to find a compensation parameter for the lossy reflection series so...
conference paper 2018
document
Holicki, M.E. (author), Drijkoningen, G.G. (author), Wapenaar, C.P.A. (author)
Up–down wavefield decomposition is effectuated by a scaled addition or subtraction of the pressure and vertical particle velocity, generally on horizontal or vertical surfaces, and works well for data given on such surfaces. The method, however, is not applicable to decomposing a wavefield when it is given at one instance in time, i.e. on...
journal article 2018
document
Wapenaar, C.P.A. (author), Brackenhoff, J.A. (author), Thorbecke, J.W. (author), van der Neut, J.R. (author), Slob, E.C. (author)
Marchenko imaging is a novel imaging technique that is capable to retrieve images from single-sided reflection measurements free of artefacts related to internal multiples (e.g. Behura et al., 2014; Broggini et al., 2012). An essential ingredient of Marchenko imaging is the so-called focusing function which can<br/>be retrieved from reflection...
conference paper 2018
document
Almagro Vidal, C. (author), van der Neut, J.R. (author), Verdel, Arie (author), Hartstra, I.E. (author), Wapenaar, C.P.A. (author)
Passive seismic interferometry enables the estimation of the reflection response of the subsurface using passive receiver recordings at the surface from sources located deep in the Earth. Interferometric imaging makes use of this retrieved reflection response in order to study the subsurface. Successful interferometric imaging relies on the...
journal article 2018
document
Wapenaar, C.P.A. (author), Brackenhoff, J.A. (author), Staring, M. (author), Thorbecke, J.W. (author), Slob, E.C. (author)
Recent developments in exploration seismology have enabled the creation of virtual sources and/or virtual receivers in the subsurface from reflection measurements at the earth's surface. Unlike in seismic interferometry, no physical instrument (receiver or source) is needed at the position of the virtual source or receiver. Moreover, no detailed...
conference paper 2018
Searched for:
(1 - 20 of 193)

Pages