Searched for:
(1 - 11 of 11)
document
Talantsev, E. F. (author), Crump, W. P. (author), Island, J.O. (author), Xing, Ying (author), Sun, Yi (author), Wang, Jian (author), Tallon, J. L. (author)
Recent experiments showed that thinning gallium, iron selenide and 2H tantalum disulfide to single/several monoatomic layer(s) enhances their superconducting critical temperatures. Here, we characterize these superconductors by extracting the absolute values of the London penetration depth, the superconducting energy gap, and the relative...
journal article 2017
document
Kou, Baoquan (author), Xing, Feng (author), Zhang, Chaoning (author), Zhang, L. (author), Zhou, Yiheng (author), Wang, Tiecheng (author)
In the semiconductor industry, positioning accuracy and acceleration are critical parameters. To improve the acceleration speed of a motor, this paper proposes the moving-coil maglev planar motor with a concentric winding structure. The coordinate system has been built for the multiple degrees of freedom movement system. The Lorenz force...
journal article 2016
document
Xiong, W. (author), Tang, J. (author), Zhu, G. (author), Han, N. (author), Schlangen, E. (author), Dong, B. (author), Wang, X. (author), Xing, F. (author)
Steel is prone to corrosion induced by chloride ions, which is a serious threat to reinforced concrete structures, especially in marine environments. In this work, we report a novel capsule-based selfrecovery system that utilizes chloride ions as a trigger. These capsules, which are functionalized via a smart response to chloride ions, are...
journal article 2015
document
Wang, X. (author), Xing, F. (author), Zhang, M. (author), Han, N. (author), Qian, Z. (author)
The recovery behavior for strength and impermeability of cementitious composites embedded with organic microcapsules was investigated in this study. Mortar specimens were formed by mixing the organic microcapsules and a catalyst with cement and sand. The mechanical behaviors of flexural and compression strength were tested. The results showed...
journal article 2013
document
Wang, X. (author), Xing, F. (author), Zhang, M. (author), Han, N. (author), Qian, Z. (author)
A new type of self-healing cementitious composites by using organic microcapsules is designed in Guangdong Key Laboratory of Durability for Coastal Civil Engineering, Shenzhen University. For the organic microcapsules, the shell material is urea formoldehyde (UF), and the core healing agent is Epoxy. The effect of organic microcapsules on...
conference paper 2013
document
Zhang, M. (author), Han, N. (author), Xing, F. (author), Wang, X. (author), Schlangen, H.E.J.G. (author)
An international cooperation research project has been financially supported by China Nature Science Foundation, which consists of three relatively independent, but strategically integrated research sub-programs, aiming at the formation of a selfhealing system based on the microcapsule principle for the cementitious composites. In this paper, a...
conference paper 2013
document
Zhang, M. (author), Han, N. (author), Xing, F. (author), Wang, X. (author), Schlangen, H.E.J.G. (author)
For a microcapsule based self-healing system in the cementitious material, a fundamental issue is to find and facilitate a suitable microcapsule system, concerning either the material selection or design and manufacture process. In this study, urea formaldehyde resin is used for the shell of microcapsule, and bisphenol – an epoxy resin E-51...
conference paper 2013
document
Dong, B. (author), Wang, Y. (author), Han, N. (author), Xing, F. (author)
Based on microcapsule technology, a new type of self-healing system for cementitious composites is established. The performance of the system was characterized by means of electrochemical impedance spectroscopy of steel bars immersed in a simulated concrete environment. The results demonstrate strong inhibition of chloride-induced corrosion when...
conference paper 2013
document
Zhang, M. (author), Han, N. (author), Xing, F. (author), Wang, X. (author), Schlangen, H.E.J.G. (author)
An international cooperation research project has been financially supported by China Nature Science Foundation, which consists of three relatively independent, but strategically integrated research sub-programs, aiming at the formation of a selfhealing system based on the microcapsule principle for the cementitious composites. In this paper, a...
conference paper 2013
document
Dong, B. (author), Wang, Y. (author), Han, N. (author), Xing, F. (author)
A novel chemical self-healing system based on microcapsule technology for cementitious composites is established in Guangdong Key Laboratory of Durability for Coastal Civil Engineering, Shenzhen University. The key issue of this system is how to release the healing material and how to activate the healing mechanism. In this paper, the study is...
conference paper 2013
document
Wang, X. (author), Xing, F. (author), Zhang, M. (author), Han, N. (author), Qian, Z. (author)
A new type of self-healing cementitious composites by using organic microcapsules is designed in Guangdong Key Laboratory of Durability for Coastal Civil Engineering, Shenzhen University. For the organic microcapsules, the shell material is urea formoldehyde (UF), and the core healing agent is Epoxy. The effect of organic microcapsules on...
conference paper 2013
Searched for:
(1 - 11 of 11)