Searched for: +
(1 - 7 of 7)
document
Milne, N. (author), Van Maris, A.J.A. (author), Pronk, J.T. (author), Daran, J.M. (author)
Background: Decarboxylation of ?-ketoisovalerate to isobutyraldehyde is a key reaction in metabolic engineering of Saccharomyces cerevisiae for isobutanol production with published studies relying on overexpression of either the native ARO10 gene or of the Lactococcus lactis kivD decarboxylase gene resulting in low enzymatic activities. Here, we...
journal article 2015
document
De Kok, S. (author), Marques, W.L. (author), Mans, R. (author), Yilmaz, D. (author), Suir, E. (author), Pronk, J.T. (author), Gombert, A.K. (author), Daran, J.M. (author), Van Maris, A.J.A. (author)
journal article 2014
document
Gonzalez-Ramos, D. (author), Van den Broek, M. (author), Van Maris, A.J.A. (author), Pronk, J.T. (author), Daran, J.M.G. (author)
Background n-Butanol and isobutanol produced from biomass-derived sugars are promising renewable transport fuels and solvents. Saccharomyces cerevisiae has been engineered for butanol production, but its high butanol sensitivity poses an upper limit to product titers that can be reached by further pathway engineering. A better understanding of...
journal article 2013
document
Koopman, F.W. (author), Beekwilder, J. (author), Crimi, B. (author), Van Houwelingen, A. (author), Hall, R.D. (author), Bosch, D. (author), Van Maris, A.J.A. (author), Pronk, J.T. (author), Daran, J.M. (author)
Background Flavonoids comprise a large family of secondary plant metabolic intermediates that exhibit a wide variety of antioxidant and human health-related properties. Plant production of flavonoids is limited by the low productivity and the complexity of the recovered flavonoids. Thus to overcome these limitations, metabolic engineering of...
journal article 2012
document
Boender, L.G.M. (author), Van Maris, A.J.A. (author), De Hulster, E.A.F. (author), Almering, M.J.H. (author), Van der Klei, I.J. (author), Veenhuis, M. (author), De Winde, J.H. (author), Pronk, J.T. (author), Daran-Lapujade, P.A.S. (author)
Extremely low specific growth rates (below 0.01 h?1) represent a largely unexplored area of microbial physiology. In this study, anaerobic, glucose-limited retentostats were used to analyse physiological and genome-wide transcriptional responses of Saccharomyces cerevisiae to cultivation at near-zero specific growth rates. While quiescence is...
journal article 2011
document
Boender, L.G.M. (author), Almering, M.J.H. (author), Dijk, M. (author), Van Maris, A.J.A. (author), De Winde, J.H. (author), Pronk, J.T. (author), Daran-Lapujade, P. (author)
Cultivation methods used to investigate microbial calorie restriction often result in carbon and energy starvation. This study aims to dissect cellular responses to calorie restriction and starvation in Saccharomyces cerevisiae by using retentostat cultivation. In retentostats, cells are continuously supplied with a small, constant carbon and...
journal article 2011
document
Medina, V.G. (author), Almering, M.J.H. (author), Van Maris, A.J.A. (author), Pronk, J.T. (author)
In anaerobic cultures of wild-type Saccharomyces cerevisiae, glycerol production is essential to reoxidize NADH produced in biosynthetic processes. Consequently, glycerol is a major by-product during anaerobic production of ethanol by S. cerevisiae, the single largest fermentation process in industrial biotechnology. The present study...
journal article 2009
Searched for: +
(1 - 7 of 7)