Searched for:
(1 - 4 of 4)
document
Samiotis, Ioannis Petros (author)
Side-Channel Attacks, are a prominent type of attacks, used to break cryptographic implementations on a computing system. They are based on information "leaked" by the hardware of a computing system, rather than the encryption algorithm itself. Recent studies showed that Side-Channel Attacks can be performed using Deep Learning models. In this...
master thesis 2018
document
Dhar, Aniket (author)
Convolutional neural networks are showing incredible performance in image classification, segmentation, object detection and other computer vision applications in recent years. But they lack understanding of affine transformations to input data. In this work, we introduce rotational invariant<br/>convolutional neural networks that learn...
master thesis 2018
document
Rao, Shashank (author)
Sleep is a natural state of our mind and body during which our muscles heal and our memories are consolidated. It is such a habitual phenomenon that we have been viewing it as another ordinary task in our day-to-day life. However, owing to the current fast-paced, technology-driven generation, we are letting ourselves be sleep-deprived, giving...
master thesis 2018
document
Wiersma, Ruben (author)
We present a new approach for deep learning on surfaces, combining geometric convolutional networks with rotationally equivariant networks. Existing work either learns rotationally invariant filters, or learns filters in the tangent plane without correctly relating orientations between different tangent planes (orientation ambiguity). We propose...
master thesis 2019
Searched for:
(1 - 4 of 4)