Searched for:
(1 - 2 of 2)
document
Scholten, Jan (author)
Deep Reinforcement Learning enables us to control increasingly complex and high-dimensional problems. Modelling and control design is longer required, which paves the way to numerous in- novations, such as optimal control of evermore sophisticated robotic systems, fast and efficient scheduling and logistics, effective personal drug dosing...
master thesis 2019
document
Wout, Daan (author)
A prevalent approach for learning a control policy in the model-free domain is by engaging Reinforcement Learning (RL). A well known disadvantage of RL is the necessity for extensive amounts of data for a suitable control policy. For systems that concern physical application, acquiring this vast amount of data might take an extraordinary amount...
master thesis 2019