Searched for: +
(1 - 20 of 25)

Pages

document
Tabakovic, A. (author), Schlangen, E. (author)
This paper presents a unique self-healing system for asphalt pavement which employs compartmented calcium-alginate fibres encapsulating an asphalt binder healing agent (rejuvenator). This system presents a novel method of incorporating rejuvenators into asphalt pavement mixtures. The compartmented fibres are used to distribute the rejuvenator...
conference paper 2018
document
Xu, S. (author), García, Alvaro (author), Su, Junfeng (author), Liu, Q. (author), Tabakovic, A. (author), Schlangen, E. (author)
In recent decades, researchers have revealed the great healing potential of asphalt and proposed various novel methods to inspire and improve the self-healing capacity of asphalt aimed to prolong the service life of asphalt pavement. In this review, up to date research progresses in induction healing and embedded rejuvenator encapsulation are...
review 2018
document
Šavija, B. (author), Feiteira, J. (author), Araújo, M. (author), Chatrabhuti, S. (author), Raquez, JM (author), van Tittelboom, K (author), Gruyaert, Elke (author), de Belie, N (author), Schlangen, E. (author)
Polymeric capsules can have an advantage over glass capsules used up to now as proof-of-concept carriers in self-healing concrete. They allow easier processing and afford the possibility to fine tune their mechanical properties. Out of the multiple requirements for capsules used in this context, the capability of rupturing when crossed by a...
journal article 2017
document
Tabakovic, A. (author), Post, W. (author), Cantero, D. (author), Copuroglu, Oguzhan (author), Garcia, Santiago J. (author), Schlangen, E. (author)
This paper explores the potential use of compartmented alginate fibres as a new method of incorporating rejuvenators into asphalt pavement mixtures. The compartmented fibres are employed to locally distribute the rejuvenator and to overcome the problems associated with spherical capsules and hollow fibres. The work presents proof of concept of...
journal article 2016
document
Romero Rodriguez, C. (author), Chaves Figueiredo, S. (author), Chiaia, B. (author), Schlangen, E. (author)
Cracking in concrete structures compromises the durability and functionality of the structures themselves. Different kinds of self-healing concretes, less or more sophisticated, have been developed in the past ten years to overcome early cracks in structures. An experimental study of a novel self-healing concrete is presented. Bitumen, used as...
conference paper 2016
document
Savija, B. (author), Schlangen, E. (author)
Concrete structures are commonly cracked when in service. To overcome issues arising from cracking, self-healing concrete is being developed. Together with the development of the material, techniques to verify and quantify self-healing are being developed. A number of destructive techniques have been used in the past. It would be beneficial to...
conference paper 2015
document
Tziviloglou, E. (author), Jonkers, H.M. (author), Schlangen, E. (author)
conference paper 2014
document
Su, J.F. (author), Qiu, J. (author), Schlangen, H.E.J.G. (author)
Preservation and renovation bitumen of pavement is a big problem for the whole world. Traditionally, application rejuvenators is the only one method that can restore the original properties of the pavements. However, some puzzles still restrict its successful usage. Microencapsulation is a promising method to apply rejuvenator in bitumen. These...
conference paper 2013
document
Su, J.F. (author), Qiu, J. (author), Schlangen, H.E.J.G. (author)
Preservation and renovation bitumen of pavement is a big problem for the whole world. Traditionally, application rejuvenators is the only one method that can restore the original properties of the pavements. However, some puzzles still restrict its successful usage. Microencapsulation is a promising method to apply rejuvenator in bitumen. These...
conference paper 2013
document
Wiktor, V. (author), Sangadji, S. (author), Jonkers, H.M. (author), Schlangen, H.E.J.G. (author)
Bacterially induced calcium carbonate precipitation has received considerable attention for its potential application in enforcing or repairing construction material. The mechanism of bacterially mediated calcite precipitation in those studies is primarily based on the enzymatic hydrolysis of urea. Besides calcite precipitation, this reaction...
conference paper 2013
document
Xiong, W. (author), Zhu, G. (author), Tang, J. (author), Dong, B. (author), Han, N. (author), Xing, F. (author), Schlangen, H.E.J.G. (author)
Poly (urea-formaldehyde) (PUF) shelled dicyclopentadiene (DCPD) microcapsules were prepared by in-situ polymerization technology for self-healing concrete applications. It’s found, during the process, sodium dodecyl benzene sulfonate (SDBS) behaves better in emulsification of DCPD than other surfactant of sodium lauryl sulfate (SLS) and styrene...
conference paper 2013
document
Qiu, J. (author), Schlangen, H.E.J.G. (author), Van de Ven, M.F.C. (author), Shirazi, M. (author)
Reclaimed Asphalt (RA) is one of the largest fractions of raw materials used in road construction today. Probably over 90% of the total RA in the Netherlands is being reused in new asphalt constructions. RA contains aggregates coated with very hard bitumen (penetration grade of 10-20). During service, the bituminous binder loses its flexibility...
conference paper 2013
document
Sangadji, S. (author), Wiktor, V.A.C. (author), Jonkers, H.M. (author), Schlangen, H.E.J.G. (author)
Bacteria induced calcite precipitation has been proven to be effective in making concrete structure self-healing. In Microlab TU Delft, the concept has been enhanced by developing a liquid bacteria-based concrete repair system. The solution contains calcite precipitating bacteria, nutrients and buffer compound which may demonstrate high...
conference paper 2013
document
Zhang, M. (author), Han, N. (author), Xing, F. (author), Wang, X. (author), Schlangen, H.E.J.G. (author)
For a microcapsule based self-healing system in the cementitious material, a fundamental issue is to find and facilitate a suitable microcapsule system, concerning either the material selection or design and manufacture process. In this study, urea formaldehyde resin is used for the shell of microcapsule, and bisphenol – an epoxy resin E-51...
conference paper 2013
document
Sangadji, S. (author), Wiktor, V.A.C. (author), Jonkers, H.M. (author), Schlangen, H.E.J.G. (author)
Bacteria induced calcite precipitation has been proven to be effective in making concrete structure self-healing. In Microlab TU Delft, the concept has been enhanced by developing a liquid bacteria-based concrete repair system. The solution contains calcite precipitating bacteria, nutrients and buffer compound which may demonstrate high...
conference paper 2013
document
Wiktor, V.A.C. (author), Sangadji, S. (author), Jonkers, H.M. (author), Schlangen, H.E.J.G. (author)
Bacterially induced calcium carbonate precipitation has received considerable attention for its potential application in enforcing or repairing construction material. The mechanism of bacterially mediated calcite precipitation in those studies is primarily based on the enzymatic hydrolysis of urea. Besides calcite precipitation, this reaction...
conference paper 2013
document
Zhang, M. (author), Han, N. (author), Xing, F. (author), Wang, X. (author), Schlangen, H.E.J.G. (author)
An international cooperation research project has been financially supported by China Nature Science Foundation, which consists of three relatively independent, but strategically integrated research sub-programs, aiming at the formation of a selfhealing system based on the microcapsule principle for the cementitious composites. In this paper, a...
conference paper 2013
document
Zhang, M. (author), Han, N. (author), Xing, F. (author), Wang, X. (author), Schlangen, H.E.J.G. (author)
An international cooperation research project has been financially supported by China Nature Science Foundation, which consists of three relatively independent, but strategically integrated research sub-programs, aiming at the formation of a selfhealing system based on the microcapsule principle for the cementitious composites. In this paper, a...
conference paper 2013
document
Zhang, M. (author), Han, N. (author), Xing, F. (author), Schlangen, H.E.J.G. (author)
For a microcapsule based self-healing system in the cementitious material, a fundamental issue is to find and facilitate a suitable microcapsule system, concerning either the material selection or design and manufacture process. In this study, urea formaldehyde resin is used for the shell of microcapsule, and bisphenol – an epoxy resin E-51...
conference paper 2013
document
Xiong, W. (author), Zhu, G. (author), Tang, J. (author), Dong, B. (author), Han, N. (author), Xing, F. (author), Schlangen, H.E.J.G. (author)
Poly (urea-formaldehyde) (PUF) shelled dicyclopentadiene (DCPD) microcapsules were prepared by in-situ polymerization technology for self-healing concrete applications. It’s found, during the process, sodium dodecyl benzene sulfonate (SDBS) behaves better in emulsification of DCPD than other surfactant of sodium lauryl sulfate (SLS) and styrene...
conference paper 2013
Searched for: +
(1 - 20 of 25)

Pages