; ?@ABCDOh+'0HP
$TU Delft Repository search results0TU Delft Repository search results (max. 1000)TU Delft LibraryTU Delft Library@mm=@mm=՜.+,0HPX`hp
x
WorksheetFeuilles de calcul
B=%r8X"1Calibri1Calibri1Calibri1
Calibri 83ffff̙̙3f3fff3f3f33333f33333.vTU Delft Repositoryg uuidrepository linktitleauthorcontributorpublication yearabstract
subject topiclanguagepublication type publisherisbnissnpatent
patent statusbibliographic noteaccess restrictionembargo datefaculty
departmentresearch group programmeprojectcoordinates)uuid:4b42fa39cb8b417cbf937964a662f27bDhttp://resolver.tudelft.nl/uuid:4b42fa39cb8b417cbf937964a662f27b0Exploring Thin Glass Strength Test MethodologiesOliveira Santos, Francisco (University of Lisbon); Louter, P.C. (TU Delft OLD Structural Design); Rama Correia, Joo (University of Lisbon)oLouter, Christian (editor); Bos, Freek (editor); Belis, Jan (editor); Veer, Fred (editor); Nijsse, Rob (editor)6Thin glass is currently widespread in mobile devices and has great potential for applications in buildings. However, presently there is no standard method to determine the strength of thin glass for building applications and there is little experimental data available on its mechanical behaviour. Hence, this paper presents experimental and numerical investigations developed with two main goals: (i) to assess and (eventually) adapt existing test setups in order to determine the strength of thin glass; and (ii) to characterize thin glass using those tests, focusing on the ultimate strength of the material. The experimental programme, which was executed at TU Delft, comprised destructive tests on chemically tempered thin glass (thickness of 2 mm). Two destructive tests were assessed and tentatively improved: the inplane fourpoint bending test, which involved many difficulties related with geometrical and mechanical instabilities; and the buckling test, which provided a lower bound for the material strength, as failure was triggered in the supports (due to stress concentrations). Based on the results obtained, a new tension test was proposed and numerically investigated; the results obtained revealed many advantages over the former tests in terms of quality/consistency of results and possibility of standardization.Ythin glass; strength; material characterization; destructive testing; numerical modellingenconference paper
TU Delft Open9789463660440)uuid:a92701716bc340e88a2780092380da9fDhttp://resolver.tudelft.nl/uuid:a92701716bc340e88a2780092380da9fHAn axisymmetric nonhydrostatic model for doublediffusive water systemsHilgersom, K.P. (TU Delft Water Resources); Zijlema, M. (TU Delft Environmental Fluid Mechanics); van de Giesen, N.C. (TU Delft Water Resources)=The threedimensional (3D) modelling of water systems involving doublediffusive processes is challenging due to the large computation times required to solve the flow and transport of constituents. In 3D systems that approach axisymmetry around a central location, computation times can be reduced by applying a 2D axisymmetric model setup. This article applies the Reynoldsaveraged Navier Stokes equations described in cylindrical coordinates and integrates them to guarantee mass and momentum conservation. The discretized equations are presented in a way that a Cartesian finitevolume model can be easily extended to the developed framework, which is demonstrated by the implementation into a nonhydrostatic freesurface flow model. This model employs temperature and salinitydependent densities, molecular diffusivities, and kinematic viscosity. One quantitative case study, based on an analytical solution derived for the radial expansion of a dense water layer, and two qualitative case studies demonstrate a good behaviour of the model for seepage inflows with contrasting salinities and temperatures. Four case studies with respect to doublediffusive processes in a stratified water body demonstrate that turbulent flows are not yet correctly modelled near the interfaces and that an advanced turbulence model is required.axisymmetric model; CFD modelling; densitydriven flow; double diffusion; doublediffusive convection; heat transport; nonhydrostatic model; numerical modelling; salt transport; saltfingers; SWASH (Simulating WAves till SHore)journal articleWater Resou< rces)uuid:68b47b2350d94b389e8b40b791958492Dhttp://resolver.tudelft.nl/uuid:68b47b2350d94b389e8b40b791958492\Modelling the cyclic ratcheting of sands through memoryenhanced bounding surface plasticityLiu, H. (TU Delft Geoengineering); Abell, J. A. (Universidad de los Andes); Diambra, A. (University of Bristol); Pisano, F. (TU Delft Geoengineering)'The modelling and simulation of cyclic sand ratcheting is tackled by means of a plasticity model formulated within the wellknown critical state, bounding surface SANISAND framework. For this purpose, a third locus termed the memory surface is cast into the constitutive formulation, so as to phenomenologically capture micromechanical, fabricrelated processes directly relevant to the cyclic response. The predictive capability of the model under numerous loading cycles ( highcyclic loading) is explored with focus on drained loading conditions, and validated against experimental test results from the literature including triaxial, simple shear and cyclic loading by oedometer test. The model proves capable of reproducing the transition from ratcheting to shakedown response, in combination with a single set of soil parameters for different initial, boundary and loading conditions. This work contributes to the analysis of soil structure interaction under highcyclic loading events, such as those induced by environmental and/or traffic loads._constitutive relations; numerical modelling; offshore engineering; plasticity; sands; stiffnessAccepted Author Manuscript
20191010)uuid:81bc9d74c2b648a7a63dab6d8538587aDhttp://resolver.tudelft.nl/uuid:81bc9d74c2b648a7a63dab6d8538587aXModelling in applied hydraulics: More accurate in decision making than in science? (PPT)TMosselman, E. (TU Delft Rivers, Ports, Waterways and Dredging Engineering; Deltares)4Marked differences occur between modelling in scientific hydraulic research, in hydraulic engineering and in public decision making. This study reviews ifferences in the required accuracy of model results and differences in the choice between physical and numerical modelling. Physical models are used for studying elementary processes and their interactions under controlled conditions in scientific research; for the planning and design of interventions in hydraulic engineering; and for explanation and demonstration in public decision making. Numerical models are powerful tools in scientific research, butfield applications cannot be verified or validated according to rigorous scientific standards. Hydraulic engineers use numerical models for various purposes, some requiring a high accuracy and some not. They are used to uncertainty and deal with this by means of sensitivity analyses or probabilistic approaches. Numerical models are also used for decision making on interventions that affect stakeholders, sometimes even having the last word in corresponding protocols or legislation. The suggested or perceived accuracy of model results is in this context much higher than the real accuracy. This leads to the paradoxical situation that decision makers and stakeholders put higher demands on accuracy than scientists do.HPhysical modelling; numerical modelling; validation; design flood levelsotherPower Point Presentation)uuid:38f0e80ed41043fbb7efc501485502a8Dhttp://resolver.tudelft.nl/uuid:38f0e80ed41043fbb7efc501485502a8RModelling in applied hydraulics: More accurate in decision making than in science?)uuid:51ee1355eca146b18ec71164689e4593Dhttp://resolver.tudelft.nl/uuid:51ee1355eca146b18ec71164689e4593YHow tides and waves enhance aeolian sediment transport at the sand motor meganourishmentHoonhout, B.M. (TU Delft Coastal Engineering; Deltares); Luijendijk, A.P. (TU Delft Coastal Engineering; Deltares); de Vries, S. (TU Delft Coastal Engineering); Roelvink, D. (UNESCOIHE)AAagaard, T. (editor); Deigaard, R. (editor); Fuhrman, D. (editor)Expanding knowledge concerning the close entanglement between subtidal and subaerial processes in coastal environments initiated the development of the opensource Windsu< rf modeling framework that enables us to simulate<br/>multifraction sediment transport due to subtidal and subaerial processes simultaneously. The Windsurf framework couples separate model cores for subtidal morphodynamics related to waves and currents and storms and aeolian<br/>sediment transport. The Windsurf framework bridges three gaps in our ability to model longterm coastal morphodynamics: differences in time scales, land/water boundary and differences in meshes.<br/>The Windsurf framework is applied to the Sand Motor meganourishment. The Sand Motor is virtually permanentlyexposed to tides, waves and wind and is consequently highly dynamic. In order to understand the complex<br/>morphological behavior of the Sand Motor, it is vital to take both subtidal and subaerial processes into account. The ultimate aim of this study is to identify governing processes in aeolian sediment transport estimates in coastal environments and improve the accuracy of longterm coastal morphodynamic modeling. <br/>At the Sand Motor beach armoring occurs on the dry beach. In contrast to the dry beach, no armor layer can be established in the intertidal zone due to periodic flooding. Consequently, during low tide nonarmored intertidal beaches are susceptible for wind erosion and, although moist, may provide a larger aeolian sediment supply than the vast dry beach areas. Hence, subtidal processes significantly influence the subaerial morphology and both need to be accounted for to understand the longterm aeolian morphodynamic behavior of the Sand Motor.shydrodynamics; sediment transport; morphodynamics; dunes and ecomorphology; numerical modelling; coasts and climate)uuid:e964293af6e94ae1ba51a550e9ad3cc0Dhttp://resolver.tudelft.nl/uuid:e964293af6e94ae1ba51a550e9ad3cc0OResponse in the mekong deltaic coast to its changing sediment sources and sinksPhan, M.H. (TU Delft Coastal Engineering; Vietnam Minsitry of Agriculture and Rural Development); Reniers, A.J.H.M. (TU Delft Environmental Fluid Mechanics); Ye, Q. (Deltares); Stive, M.J.F. (TU Delft Coastal Engineering)4
The coastal zone of Mekong delta is suffering under intense pressures from climate change as well as human intervention. Currently, the coastline evolution of Mekong delta is a complex combination of impacts due to (1) relative sea level rise i.e. the sum of eustatic sea level rise, natural and human induced subsidence (2) sediment transport rate changes at some sections due to change of wave condition by climate change (3) change of sediment sources from the Mekong estuaries by dam construction and sand mining and (4) mangrove degradation. A coastline monitoring is the basis to understand and manage coast. This study utilizes integrated techniques of remote sensing, geographic information system and statistics to monitor coastline change over the period of 1973 to 2015 from Landsat images of Multispectral (MSS), Thematic Mapper (TM), Enhanced Thematic Mapper Plus (ETM+), Operational Land Imager (OLI) at coastal area of Mekong delta. An advanced toolbox is developed for the work of atmospheric and radiometric correction of Landsat images as well as influence of tidal range is taken into account to obtain mean water level. Tasseled Cap and Normalized Difference Water Index (NDWI) algorithm is applied to separate landwater interface for extracting shorelines. Besides, a digital shoreline assessment system (DSAS) tool is used to analyze shoreline rate by statistic parameters as Shoreline Change Envelope (SCE), End Point Rate (EPR) and Linear Regression (LRR). Furthermore, uncertainty assessment for this methodology based on topographic surveying and Google Earth images. Moreover this research explored relationships between the accretion and erosion of land and the sediment load of the Mekong River. The results revealed a general pattern of accretion and erosion. The eastern coast, which is fragmented by 9 estuaries, was significant accretion and erosion, especially annual erosion rate of around 40 meter at Bo De estuary is noted. Meanwhile the western coast is rather stable, partic< ularly annual accretion rate of up to 9095 meter at Datmui commune of Camau province. This study indicated there is relative difference of coastline change rate among periods of 19731990, 19902005 and 2005 present. And the study illustrates the rate of shoreline change is significantly associated with sediment discharge on Mekong River through statistic approach, especially the phase of sediment flow decrease by dam and sand mining on Mekong River in recent 15 years. The results of methodology and maps from this research may be useful in planning and management of this exposed coastline.bhydrodynamics; alongshore current; tidal current; numerical modelling; waveresolving model; SWASH)uuid:424c4f194bd248cd9221b6e3e8426636Dhttp://resolver.tudelft.nl/uuid:424c4f194bd248cd9221b6e3e8426636OUncertainty assessment in coastal morphology prediction with a bayesian networkRKroon, J. (TU Delft Coastal Engineering; Svaaek Hydraulics); de Schipper, M.A. (TU Delft Coastal Engineering; Shore Monitoring & Research); den Heijer, C. (TU Delft Management Support; TU Delft Coastal Engineering; Deltares); Aarninkhof, S.G.J. (TU Delft Coastal Engineering); van Gelder, P.H.A.J.M. (TU Delft Safety and Security Science)[In the present time of sealevel rise and climate change a global shift has occurred toward sandy coastal protection measures and Building with Nature. These type of protection measures impose extra uncertainty on the instantaneous state of the coastal system over time for which present deterministic forecasting techniques are not capable of providing necessary information on uncertainties and hence could display a false sense of accuracy and skill. At present in long term morphological modeling a full systemic approach for uncertainty assessment has not yet been applied. This paper investigates the use of a Bayesian Network as a tool for uncertainty assessment in decadal scale morphological modeling for the evolution of a mega nourishment at the Dutch NorthHolland coast, the Hondsbossche Dunes (HBD). The Bayesian Network is trained with an existing set of model data and field data of one year bed development. The Bayesian Network successfully transfers the bandwidth in input variables, model uncertainty and calibration uncertainty to an uncertainty bandwidth around the output parameter of choice.XBayesian Network; uncertainty; morphodynamics; numerical modelling; Building with Nature)uuid:b10bd89022ff419e996e181da3712ae0Dhttp://resolver.tudelft.nl/uuid:b10bd89022ff419e996e181da3712ae02Including tidal currents in a waveresolving modelde Wit, F.P. (TU Delft Environmental Fluid Mechanics); Tissier, M.F.S. (TU Delft Environmental Fluid Mechanics); Reniers, A.J.H.M. (TU Delft Environmental Fluid Mechanics)oCoastal systems are influenced by a combination of waves and tides. In certain cases, tideinduced alongshore currents can be of similar order or even larger than waveinduced currents. Until now, however, no detailed waveresolving modelling studies included tidal currents. This paper presents a method to implement alongshore tidal currents by adding a pressure term to the alongshore momentum balance and includes modifications to the numerical wave maker to allow for both waves and currents to be generated. The method is successfully validated by comparing simulations with and without inclusion of the tidal current to measurements obtained from the COAST3D data set. Wave prediction is equally good with and without the tidal implementation, but the alongshore current and its distribution over the crossshore are much better predicted by the model with the new method.)uuid:926378207a3749baa6ab00450c3e2642Dhttp://resolver.tudelft.nl/uuid:926378207a3749baa6ab00450c3e2642#Infragravity waves and bore mergingTissier, M.F.S. (TU Delft Environmental Fluid Mechanics); Bonneton, P (Universit de Bordeaux); Ruessink, Gerben (Utrecht University)The phenomenon of bore merging is investigated using two highresolution laboratory experiments including bichromatic and irregular wave conditions. The locations at which wav< es start merging are identified and the hydrodynamic conditions in the vicinity of the merging points are examined. Bore merging takes place in the inner surf zone for all conditions considered. The infragravity to shortwave height ratio is close to or larger than one at the merging point, indicating that bore merging occurs in a part of the surf zone that is already dominated by the infragravity waves. Our data analysis is supplemented by numerical simulations that confirms the importance of infragravity waves in the occurrence bore merging. Moreover, our simulations suggest that bore merging has a very limited effect on the infragravity wave field. This casts doubts on the importance of bore merging as an infragravity wave generation mechanism.)uuid:b038f8a2d2db46fc84193141f21faa1cDhttp://resolver.tudelft.nl/uuid:b038f8a2d2db46fc84193141f21faa1c2Surf Wave Hydrodynamics in the Coastal Environment5Salmon, J.E. (TU Delft Environmental Fluid Mechanics)9Pietrzak, J.D. (promotor); Holthuijsen, L.H. (copromotor)Stochastic wave models play a central role in our presentday wave modelling capabilities. They are frequently used to compute wave statistics, to generate boundary conditions and to include wave effects in coupled model systems. Historically, such models were developed to predict the wave field evolution in deep water where the conditions of Gaussianity generally hold. However, in recent decades, such models have been applied to the shallower coastal environment where the stochastic representation of the dominant wave physics becomes questionable. This is primarily due to the increased influence of wave nonlinearity and the additional depthinduced wave processes that are dominant in this region.<br/><br/>Unfortunately, the two most dominant wave processes in the surf zone: depthinduced wave breaking and nonlinear triad wavewave interactions are also the least well represented and understood. This is due to both their complexity and the scarcity of analytical solutions for realistic wave fields. As such, they represent a significant obstacle in the accurate modelling of the wave dynamics in the coastal region. Providing accurate representations of these wave processes is essential to answering the questions demanded from stochastic wave models from coastal engineers for coastal management and design. Such advancements are necessary to improve our understanding of waveinduced processes, to reduce costs in managing the coastal environment and to tackle contemporary issues such as uncertainties with respect to increased sea level rise.<br/><br/>Due to the complexity of depthinduced wave breaking, a complete representation of this wave process does not exist for both stochastic and deterministic modelling frameworks. Although there is extensive literature on the subject of parameterizing depthinduced wave breaking in a stochastic sense, these parameterizations are inconsistent with theory, observations and (deterministic) model predictions. In particular, presentday modelling defaults perform poorly over (near)horizontal bathymetries with overenhanced wave dissipation of locallygenerated waves and insufficient dissipation of swell waves. Equally, nonlinear triad wavewave interactions are poorly represented in stochastic wave models due to the problem of closure and the impractical computational expense of more accurate representations. In particular, the most commonly applied parameterization in the wave literature incorrectly predicts the evolution of the spectral shape, and the convergence to an equilibrium highfrequency tail deep in the surf zone. Correctly resolving these issues is essential for the management of many of the activities occurring at the coast; from the design of coastal defenses to feasibility studies for wave energy converters, from port operation and availability to vessel navigation, from understanding the ecology at the coast to the fisheries, and from managing leisure and tourism to safety at the coast.<br/><br/> In this work, we investigate the process of depthinduced wave breaking thr< ough a comprehensive analysis of the literature and a comparison of modelling performance. Here, we use an extensive set of wave observations representing a large range of wave conditions and bathymetric profiles. The analysis demonstrates that no currently available depthinduced breaking source term is capable of sufficiently representing the process of depthinduced wave breaking. This is shown to be in agreement with the wave literature with parameterizations either overpredicting wave dissipation for locally generated waves or underpredicting wave dissipation for nonlocally generated waves over (near)horizontal bathymetries. To address this issue, a new joint scaling using both local wave and bathymetric conditions is proposed. Using both the normalized characteristic wave number and local bottom slope unifies two approaches prevalent in the wave literature. This is shown to improve the model performance for the dissipation of both locally and nonlocally generated waves over (near)horizontal bathymetries. <br/><br/>Furthermore, the validity of the assumption that wave dissipation can be modelled as analogous to a 1D dissipative bore is explored. Subsequently, a heuristic directional modification is introduced for depthinduced wave breaking dissipation models. This directionally partitions the 2D spectrum into several directional partitions that are assumed to be unidirectional. Model results demonstrate that the effect of the directional partitioning is to reduce the dissipation of wave energy and to enhance the significant wave height; in agreement with field measurements. Not only is this modification shown to be applicable to the joint wave breaking parameterization proposed in this study, but also for wellestablished parameterizations. <br/><br/>The effects of both the proposed scaling and directional modification are then reviewed from an operational context and are compared to stateoftheart source terms, field observations and a hypothetical storm representative of Dutch design conditions. Such design conditions are expected to be representative of design conditions found globally. In an environment where storm intensities may be increasing, for example due to global warming, the results of wave breaking models near the coast under such extreme conditions become of greater relevance. The influence of wave breaking models in coupled model systems is anticipated to provide important new insights in understanding the various wavedriven processes along our coasts. <br/><br/>Next, the representation of the nonlinear triad wavewave interactions in stochastic wave models is reviewed. In particular, the collinear approximation used to transform 1D triad source terms for implementation in 2D stochastic wave models is revisited. These approximations are necessitated by considerations of computational efficiency. The conventional collinear approximation is shown to be inconsistent at the unidirectional limit and to be a primary source of modelling error. Instead of converging to the values predicted by the 1D triad source terms at the unidirectional limit, the energy transfers as computed by stochastic wave models are shown to become unbounded. This results in a dimensional calibration coefficient which is at least an order of magnitude smaller than that found in the wave literature. Consequently, for directional wave conditions, 1D triad source terms implemented with the conventional collinear approximation insufficiently capture the wave evolution. To address this problem, a new collinear approximation is presented which accounts for the wave energy contained within a finite directional bandwidth. This collinear approximation is shown to converge correctly at the unidirectional limit and to agree well with predictions from a secondorder accurate deterministic wave model. In particular, better agreement is shown in the modelling prediction of the spectral shape and related integral parameters, e.g. wave period, under idealized wave conditions. Under certain conditions, these error reductions are shown to be more signific< ant than differences between the underlying triad models.<br/><br/>The contribution of this work demonstrates that while the underlying theory underpinning stochastic wave modelling in the coastal environment still remains questionable, the accurate determination of wave statistics in the coastal zone is tenable. With the advancements presented in this study, the new source terms correspond better with the current wave literature and are shown to provide significant steps forward over existing default source terms. The developments presented here are anticipated to form the foundation for future source term research, and to be used for the representation of the dominant wave physics in the coastal environment in operational wave models.mwave dynamics; numerical modelling; coastal systems; wave breaking; nonlinear interactions; stochastic modelsdoctoral thesis9789492516176)uuid:0611ddb7324a479bbc1228dec5901f02Dhttp://resolver.tudelft.nl/uuid:0611ddb7324a479bbc1228dec5901f02SA macroelement framework for shallow foundations including changes in configuration@Pisano, F. (TU Delft Geoengineering); Flessati, L; di Prisco, CWMacroelement plasticity models are being increasingly applied to study nonlinear soil foundation interaction (SFI) problems. Macroelement models are particularly appealing from a computational standpoint, as they can capture the essence of SFI by means of a few degrees of freedom. However, all the macroelement formulations available in the literature suffer from the same limitation, that is the incapability of accounting for changes in both geometry and loading/boundary conditions. Accordingly, macroelement models are usually calibrated to analyse a given boundary value problem, with no chance of handling situations with significant variations in embedment, lateral surcharge and/or phreatic level. The present work shows how standard soil modelling concepts can be exploited to reproduce relevant configurational features of nonlinear SFI. A macroelement framework is here proposed to simulate the drained load settlement response of shallow footings on sand in the presence of varying surface/body forces. As a first step, the ideal case of a weightless soil layer is exclusively considered. The macroelement constitutive equations are conceived/calibrated on a minimal set of finiteelement results; the satisfactory predictive capabilities of the macroelement model are finally demonstrated by retrospectively simulating selected finiteelement tests.nbearing capacity; ootings/foundations; numerical modelling; plasticity; settlement; soil/structure interaction
20180201Geoengineering)uuid:4000389f6da749aeb4880bd821adcc6fDhttp://resolver.tudelft.nl/uuid:4000389f6da749aeb4880bd821adcc6f=Slope failure analysis using the random material point methodtWang, B. (TU Delft Geoengineering); Hicks, M.A. (TU Delft Geoengineering); Vardon, P.J. (TU Delft Geoengineering)The random material point method (RMPM), which combines random field theory and the material point method (MPM), is proposed. It differs from the random finiteelement method (RFEM), by assigning random field (cell) values to material points that are free to move relative to the computational grid rather than to Gauss points in a conventional finiteelement mesh. The importance of considering the effects of both large deformations and the spatial variability of soil strength properties in slope stability analyses is highlighted, by comparing RMPM solutions with RFEM and deterministic MPM solutions for an idealised strainsoftening clay slope characterised by a spatially varying undrained shear strength. The risks posed by potential slides are quantified by the extent of retrogressive failure that is, due to the tendency for secondary failures to be triggered by the removal of support from the remaining soil mass caused by the initial failure. The results show that RMPM provides a much wider range of solutions, in general increasing the volume of material in the failure compared with the RFEM solutions, which are usually limited to the i< nitial slide. Moreover, the anisotropic nature of soil heterogeneity is shown to have a significant influence on the nature and extent of failure5landslides; numerical modelling; statistical analysis
20170630)uuid:783456a877ba4dd691ff6a1862cc71e7Dhttp://resolver.tudelft.nl/uuid:783456a877ba4dd691ff6a1862cc71e7TPhysical Processes Driving the Morphological Evolution of the Roggenplaat Tidal Flatde Vet, P.L.M. (TU Delft Environmental Fluid Mechanics); van Prooijen, Bram (TU Delft Environmental Fluid Mechanics); Schrijvershof, R. (Deltares); van der Werf, JJ (Deltares); Schrijver, MC (Deltares); Wang, Zhengbing (TU Delft Coastal Engineering)The flow velocities in tidal channels are already rather complex by the presence of various tidal components, wind driven flow and estuarine circulations. An extra level of complexity is introduced when the flow on top of an intertidal<br/>flat is considered (Le Hir, 2000). This research aims at understanding the complex flow patterns on top of a largescale intertidal flat and on assessing the morphological consequences. The focus of this study is on the Roggenplaat, which is with an intertidal area of 14.6 km2 the largest intertidal flat<br/>fully surrounded by channels of the Eastern Scheldt (The Netherlands, see Figure 1). The flat is subject to a mean tidal range of 2.6 m and is characterized by a typical sediment grain size of 0.25 mm. Two large tidal creeks in the Northwest<br/>are the remainder of the merging of separate flats 80150 years ago. Since the late 1980s, the flats in the Eastern Scheldt have been eroding severely because of the construction of a storm surge barrier and various compartment dams (Louters, 1998). A nourishment of 1.65 million m3 is planned on this flat for 2017, to compensate for its lowering. This study combines the results of an Acoustic Doppler Current Profiler (ADCP) measurement campaign with the results of a numerical model. Apart from validation material for the numerical model, the ADCP data is also analysed individually. The focus of this study is on the presentday hydrodynamics and morphodynamics of the Roggenplaat, which is essential knowledge for the design of appropriate nourishment strategies. Furthermore, physical insights achieved in this study are relevant for the understanding of other largescale intertidal flats around the world.Iintertidal flat; Eastern Scheldt; field measurements; numerical modelling)uuid:8a5eb35f8d44426791934275bdab429dDhttp://resolver.tudelft.nl/uuid:8a5eb35f8d44426791934275bdab429d=Hydrodynamics in the midfield plume region of the Rhine ROFIRijnsburger, S. (TU Delft Environmental Fluid Mechanics); Audibert, R.F. (University of Washington); Souza, Alejandro J. (National Oceanography Center); HornerDevine, Alexander R. (University of Washington); Pietrzak, J.D. (TU Delft Environmental Fluid Mechanics)River plumes, also regions of freshwater influence , are important features to understand because of their impact on the current structure, stratification and the transport of fine sediments, nutrients and contaminants. One important river plume is the Rhine ROFI. Prior studies have sought to understand farfield dynamics where crossshore straining is dominant (Simpson & Souza, 1995; Souza & Simpson,1995; De Boer et al., 2008). However, less is known about the midfield region of this river plume, where fronts matter as well. Here we use field observations from a 6 week measurement campaign in fall 2014 to investigate the dynamics of the midfield region of het Rhine ROFI. We will focus on the interaction between farfield processes, such as tidal straining, and near field processes, such as fronts. The Rhine ROFI is of interest because the Dutch coast has been modified by extending the Port of Rotterdam and the construction of the Sand Engine that extends into the southern North Sea. These perturbations might impact the currents, the ROFI and the distribution of fine sediment, nutrients and contaminants. Therefore, the understanding of this is of importance. During September and October 2014, a < large field observational campaign was conducted off the Dutch coast close to the sand Engine, 10 km north of the river outflow. Measurements were made at two locations, 2 and 5.5 km offshore (see Figure 1). Moorings, with Conductivity Temperature Depth (CTD) and Optical Backscatter (OBS) instruments at different depths, were deployed to obtain vertical profiles of salinity and suspended sediment concentrations (SSC). In addition, at each location a bottommounted Acoustic Doppler Current Profiler (ADCP) measured vertical velocity profiles. Radar images of the area were used to gain surface information, specifically about frontal propagation in the vicinity of the measurement locations. The weather conditions were highly variable during the six week period. There were very calm periods, but also storms, which completely destroyed stratification. The wind direction changed during the campaign as well. In addition to the data, numerical modelling with a 3D hydrostatic model will be used to gain information of the entire midfield plume._river plume; insitu measurements; crossshore straining; numerical modelling; frontal dynamics)uuid:5cc8dbd45c39486ab3815bd2f19dc91eDhttp://resolver.tudelft.nl/uuid:5cc8dbd45c39486ab3815bd2f19dc91e1Thermal management of solid state lighting moduleYe, H.Zhang, G.Q. (promotor)SolidState Lighting (SSL), powered by LightEmitting Diodes (LEDs), is an energyefficient technology for lighting systems. In contrast to incandescent lights which obtain high efficiency at high temperatures, the highest efficiency of LEDs is reached at low temperatures. The thermal management in LED product is then a key design parameter as the high operation temperature directly affects the maximum light output, quality, reliability and life time. Solutions are sought in optimizing the thermal path, materials with better thermal conductivity and increasing the performance of convection and radiation. However, the apparent dilemma is to optimize light efficiency and effectively designing thermal management. In order to be able to optimize the LED temperature, an electricalthermalluminouschromatic (ETLC) model was developed that takes into account the thermal effect on the energy conversion rate from electric power (E) to primary blue light and from blue light into yellow light as a function of the insitu temperature (T). As the conversion rates of the die and phosphor differ, the white light performance changes both in flux (L) and spectrum (C). The model was successfully verified using three commercially available LED packages. Furthermore, the model was also used to study the effect of layer thickness and particle density variations of the phosphorous layer on the thermal performance and light quality. As the temperature is both critical to light performance and thermal management, knowing the temperature in the LED is indispensable. The diode forward voltage method with pulsed currents has been widely used to monitor the junction temperature (Tj) of LEDs. However, this method suffers from a thermal transient effect (TTE) resulting in measurement errors. Using Thermoelectric (TE) physics this phenomenon was explained and a group of experiments was used to study the TTE in Tj measurements for highvoltage (HV) LEDs. The measurement uncertainty was more than 10 C which is not acceptable for accurate monitoring. Therefore, an improved Pulsefree Direct Junction Temperature Measurement (DJTM) method was applied to HV LEDs to reduce the errors and to achieve an accurate in situ Tj measurement using DC currents. This also resulted in a simpler setup and a simpler measurement sequence. Although the Tj is the most relevant temperature to know, the LED package or case temperature is much easier to measure and apply. A microelectromechanicalsystem (MEMS) based, temperature triggered, switch was developed as a costeffective solution for smart cooling control in SSL systems. The switch was embedded in a silicon substrate and fabricated with a singlemask 3D micromachining process. The device switched on at a designe< d temperature threshold with a small contact resistance, and switched off when the temperature drops below that limit. Through the embedded MEMS switch, an automatic temperature controller was obtained without adding electrical components to the package. As standard semiconductor manufacturing processes are used, integration and fabrication in future silicon based SSL systems is expected to be straight forward. The phase change from liquid to vapor can be used as a driving force to move the fluid in a cooling system. Based on this principle, a cooling solution based on microfluidics and MEMS technology was presented. A test vehicle was constructed consisting of a miniaturized evaporator with a fluid channel and an embedded bulk silicon temperature sensor. A commercial HP LED package was mounted on the evaporator, with the goal to achieve maximum light output using a very small coolant flow rate. Results showed that the package obtained high efficiency and correspondingly increased light output by the twophase cooling. Additionally, via numerical simulation the phase change phenomenon and temperature distribution inside the evaporator was further investigated and optimized water flow rates for specific input powers of the package were calculated. Micro or microwick heat pipes (HPs) have received considerable attraction in the past decades especially for cooling of electronics in a limited volume. Among the HPs, the micro HP (MHP) and loop HP (LHP) with micro wicks are most preferred for their high efficiency, small dimension, and compatible process with semiconductor devices. Especially, the LHP possess all the main advantages of traditional HPs and next to that they can transfer heat over distances up to several meters at any orientation in the gravity field. Although silicon is one the most favorable materials for MHP and LHPs, polymer based MHP and LHPs are very attractive for further investigation. Therefore, a package, using a silicon substrate with temperature sensors and a polymer based LHP was designed, manufactured and assembled. This package was able to provide low and relatively stable temperature, enabling higher optical power, more luminous flux and less color shift. Last but not least, whatever cooling configuration is made, a constant element is the heat sink, which eventually dissipates the heat to the ambient environment. Thus, the heat sink design is essential but it needs a case by case approach. Using a thermal design of vertical fin arrays with HPs as passive cooling the design methodology was demonstrated. The HPs may be converted into active/passive liquid cooling as presented previously. As the natural convection and radiation dominate heat transfer in this case, the optimum vertical fin spacing, which is the critical parameter for natural convection, was calculated by the most used empirical correlations. In addition, the fin spacing was further numerical investigated and optimized using Computational Fluid Dynamics (CFD). The design was verified by building a prototype and the experimental and numerical results correlated well. The achieved results show the HPs supply good equivalent thermal conductivity with less weight and volume compared to copper or aluminum base. Furthermore, the HP (liquid cooling) enhanced the natural convection by high thermal conductivity and less obstruction to air flow.solid state lighting; light emitting diode; thermal management; electrical thermal luminous chromatic model; junction temperature; temperature sensor; MEMS; two phase cooling; voop heat pipe; vertical fin array; numerical modelling; CFD8Electrical Engineering, Mathematics and Computer Science/Electronic Components, Technology and Materials)uuid:97f11a2256ad4504a42acfedcb3677caDhttp://resolver.tudelft.nl/uuid:97f11a2256ad4504a42acfedcb3677capTowards a Practical Application of Numerical Models to Predict WaveStructure Interaction: An Initial Validation9Van den Bos, J.; Verhagen, H.J.; Zijlema, M.; Mellink, B.A more detailed understanding of porous flow inside a rubblemound structure may have potential < benefits in breakwater design. Numerical models are expected to be a useful additional research tool in this field, provided that their calculation results can be validated against measurements. This paper presents the results of a systematic effort to validate a set of different numerical models for a strongly simplified model setup. The results of this effort will be used to select models for a next stage in which the complexity of the model setup is increased. By means of this stepbystep approach a good insight in the capabilities and limitations of the various models is achieved.`rubblemound structures; porous flow; numerical modelling; VOF modelling; breakwaters; ICCE 2014$Coastal Engineering Research Council!Civil Engineering and GeosciencesHydraulic Engineering)uuid:23af0b631add4004a9c5e0cbb920c11fDhttp://resolver.tudelft.nl/uuid:23af0b631add4004a9c5e0cbb920c11f"Mechanical Behaviour of Lined Pipe
Hilberink, A.3Bijlaard, F.S.K. (promotor); Sluys, L.J. (promotor)Installing lined pipe by means of the reeling installation method seems to be an attractive combination, because it provides the opportunity of eliminating the demanding welds from the critical time offshore and instead preparing them onshore. However, reeling of lined pipe is not yet proven technology. From previous research it is known that lined pipe undergoing high plastic strains during reeling, exhibits liner wrinkling and extensive ovalisation. The main objective of this study is to investigate the possibility of installing lined pipe by means of the reeling installation method. A combination of pure bending numerical models and full scale four point bend tests were used to reach the objective. The cascade of events exhibited by the lined pipe in pure bending was fully understood. Liner wrinkling appeared to be the main failure mode of lined pipe during bending. The sensitivity of the wrinkling behaviour of the confined liner in pure bending for several geometric, material and contact parameters was examined by means of a parameter study. From this study it is concluded that reeling of lined pipe can become technically feasible, most effectively by adjusting the geometric and contact parameters of the lined pipe.Ylined pipe; double walled pipe; bending; mechanically bonded; numerical modelling; Abaqus
20111208Design and Construction)uuid:78726a2ee5424aeabf7f8611481e1091Dhttp://resolver.tudelft.nl/uuid:78726a2ee5424aeabf7f8611481e1091OA mathematical model for baterial selfhealing of cracks in concrete (abstract),Zemskov, S.V.; Jonkers, H.M.; Vermolen, F.J.Jselfhealing; numerical modelling; finiteelement method; level set methodStructural Engineering)uuid:067eafc2d813479ca8212e6f3c3c9dcfDhttp://resolver.tudelft.nl/uuid:067eafc2d813479ca8212e6f3c3c9dcfHMultiscale simulation of fluviodeltaic and shallow marine stratigraphyDalman, R.A.F.5Kroonenberg, S.B. (promotor); Weltje, G.J. (promotor)
SimClast is a basinscale 3D stratigraphic model, which allows several interacting sedimentary environments. We developed it from 2004 to 2008 at Delft University of Technology and implemented part of the Meijer (2002) code for accounting, loading and storing algorithms. SimClast is a fully plan view 2D, depthaveraged model, allowing the complex interaction between fluvial and wave influences on deltaic and shoreface development to be studied. It focuses on theoretical experiments, as quantitative experiments are intrinsically difficult to recreate in real world settings. Yet there lies the great strength of numerical modelling, as we can improve upon the understanding of these systems by focussing on the process forming and removing the deposits. The modelling applications focus especially on the erosional and nondepositional events as these probably represent the greatest amount of stratigraphic time . Shortterm, highresolution processes are coupled with the longterm stratigraphic model by nesting a parameterised version of the highresolution processes. We extrapolate physical and empirical relationships of the geomorphologi< cal development and implement these. A necessary constraint on these longterm models is a relatively large grid sizing (i.e. km scale), as the area to be modelled is on the scale of continental margins and the modelling time is on the scale of many millennia. Areas of special importance are modelled by implementing subgrid scale processes into a largescale basinfilling model; this refines the model dynamics and the resulting stratigraphy. Processes included are; fluvial channel dynamics and overbank deposition, river plume deposition, open marine currents, wave resuspension, nearshore wave induced longshore and crosshore transport. This combined modelling approach allows insight into the processes influencing the flux of energy and clastic material and the effect of external perturbations in all environments. Many governing processes work on relatively small scales, e.g. in fluvial settings an avulsion is a relatively localised phenomenon, yet they have a profound effect on fluvial architecture. This means that the model must mimic these processes, but at the same time maintain computational efficiency. Additionally, longterm models use relatively large grid sizing (km scale), as the area to be modelled is on the scale of continental margins. We solve this problem by implementing the governing processes as subgrid scale routines into the largescale basinfilling model. This parameterization greatly refines morphodynamic behaviour and the resulting stratigraphy. SimClast recreates realistic geomorphological and stratigraphic delta behaviour in river and wavedominated settings.Onumerical modelling; stratigraphy; fluvial; deltaic; shallow marine; simulation
Geotechnology)uuid:ee1cdcb8214d43649c042e40e6e87ba9Dhttp://resolver.tudelft.nl/uuid:ee1cdcb8214d43649c042e40e6e87ba9JVoorspelinstrument duurzame vaarweg: Calibration of the multidomain modelCYossef, M.F.M.; Stolker, C.; Giri, S.; Hauschild, A.; Vuren, S. vanriviermorfologie; river morphology; numerieke modellen; numerical modelling; calibratie; model calibration; sedimenttransport in rivieren; sediment transport in riversreport
Deltares (WL))uuid:c5be94eb1d984e7cb73f68e2d7754e98Dhttp://resolver.tudelft.nl/uuid:c5be94eb1d984e7cb73f68e2d7754e98Koploperproject LTVO&M  Thema veiligheid  deelproject 1: Inventarisatie historische ontwikkeling van de hoogwaterstanden in het Schelde estuarium`Jeuken, M.C.J.L; Hordijk, D.; Ides, S.; Kuijper, C.; Peeters, P.; Sonneville, B. de; Vanlede, J.veiligheid; safety; overstromingen; floods; hoogwater; flood level; estuaria; estuaries; numerieke modellen; numerical modelling; Scheldenl)uuid:ae6c1a29c9c04bfdb492e92f927cf4c3Dhttp://resolver.tudelft.nl/uuid:ae6c1a29c9c04bfdb492e92f927cf4c3Verbetering DIPROVerheij, H.J.; Prooijen, B. vannnumerieke modellen; numerical modelling; waterbeweging door schepen; shipinduced water motion; Noordzeekanaal)uuid:7754c382091544758c08a32fad37d5daDhttp://resolver.tudelft.nl/uuid:7754c382091544758c08a32fad37d5da`Numeriek modelonderzoek naar de reductie van de neer in de monding van de voorhaven van IJmuiden,Bijlsma, A.C.; Mol, A.C.S.; Winterwerp, J.C.uhavens; harbours; havenmonden; harbour mouths; stroming; flow; neren; eddies; numerieke modellen; numerical modelling)uuid:d8b275cd27974214922d6febafa9a87bDhttp://resolver.tudelft.nl/uuid:d8b275cd27974214922d6febafa9a87bLProcessbased modelling of turbiditycurrent hydrodynamics and sedimentationGroenenberg, R.M.4Kroonenberg, S.B. (promotor); Luthi, S.M. (promotor)dThe production potential of deepwater reservoirs is primarily determined by rock bulk volume, porosity and permeability. Quantification of the geometry and spatial distribution of reservoir sands in deepwater deposits can provide crucial information to assess sand body volume, connectivity and the distribution of permeability baffles. This study aims to investigate the influence of turbiditycurrent process, sediment composition and basinfloor relief, on the geometry and spatial distribution of reservoir sands in turbidite fans. For this p< urpose, a processbased model has been developed which simulates turbiditycurrent flow, erosion, and deposition based on principles of fluid dynamics that can deal with arbitrary basinfloor topography and accommodates various grain sizes. It employs the depthaveraged shallowwater approximation in combination with the Boussinesq approximation for densitydriven flow in three dimensions. Sediment transport is modelled by an advectiondiffusion type equation, and exchange with the bed is largely based on existing empirical models for sediment entrainment and deposition. The model is solved numerically on a rectangular grid representing topography by means of a secondorder finitedifference approximation, and employs a shockcapturing technique to accurately model the discontinuous flow front characteristic of densitydriven flows. Results are presented of laboratoryscale model validation tests, in which modelling results are quantitatively and qualitatively compared to experimental data. Laboratory experiments involve smallscale flows interacting with complex topographic features as well as multiple successive flows over the same erodible bed. Results indicate that the model is capable of simulating turbiditycurrent hydrodynamics and sedimentation with an acceptable degree of accuracy under a wide range of conditions.deepwater reservoirs; turbidity currents; deposits; numerical modelling; finitedifference; schockcapturing; laboratory experiments; validation)uuid:53768609192a4fc496fb9b5d038e09b2Dhttp://resolver.tudelft.nl/uuid:53768609192a4fc496fb9b5d038e09b23Morphodynamic modelling for Thuan An inlet, Vietnam2Lam, T.N.; Stive, M.J.; Verhagen, H.J.; Wang, Z.B.Thuan An is a tidal inlet located in Vietnam in a tropical monsoon area. The inlet is very dynamic and variable under the influences of not only tides and waves from the sea but also flows and floods from upstream rivers. Therefore, morphodynamic behaviour of the inlet is very complicated and not well understood. Studies on inlet are also facing with problems of data insufficient. As an effort to gain more understanding on the tidal inlet behaviour, this paper presents a study of the inlet morphodynamics using a numerical modelling approach with the applications several modelling packages including DELFT3D and SOBEKRURAL developed by WLDelft Hydraulics. SOBEK has been used to simulate properly the floods in the rivers and on the floodplain. DELFT3D has been used to simulated hydrodynamics of the coastal waters and morphodynamics of the inlet. From the results of the numerical modelling experiments, some behavioural patterns of the inlet, like migration of the inlet channel, can be explained.;tidal inlet; hydrodynamics; morphology; numerical modelling)uuid:cb24265828f7464ab97dcc9bc9c2fe9dDhttp://resolver.tudelft.nl/uuid:cb24265828f7464ab97dcc9bc9c2fe9d!Benchmarking database for Delft3DWalstra, D.J.R.; Koster, L.Sijking; calibration; validatie; validation; numerieke modellen; numerical modelling)uuid:451eb5abc92a4b68aa7cdd077c202c68Dhttp://resolver.tudelft.nl/uuid:451eb5abc92a4b68aa7cdd077c202c687Storm hindcasts Norderneyer Seegat and Amelander Zeegat8Caires, S.; Doorn, N.; Groeneweg, J.; Dongeren, A.R. van^stormen; storms; golfmodellen; wave models; numerieke modellen; numerical modelling; Waddenzee)uuid:3d58dbf894f8473ab6787aa40dc5fb1dDhttp://resolver.tudelft.nl/uuid:3d58dbf894f8473ab6787aa40dc5fb1d!Meten en modellen: Verslag fase 1\Villars, M.T.; Gerritsen, H.; Blauw, A.N.; Vogel, H.; Kolb, H.; Geer, F. van; Hof, J. van 't~informatieuitwisseling; information exchange; numerieke modellen; numerical modelling; kennisoverdracht; institutional support)uuid:634dae4b41014124ae46b47c04ed3d96Dhttp://resolver.tudelft.nl/uuid:634dae4b41014124ae46b47c04ed3d96Year simulations with the ZUNODD model on the impact of Maasvlakte2 on largescale silt transport: A comparison with 14days simulations:Kessel, T. van.; Goede, E.D. de; Boogaard, H.F.P. van den.bhavenwerken; harbour works; silttransport; silt transport; numerieke model< len; numerical modelling)uuid:c2511bacc2224cb29dc3bed247c73d1bDhttp://resolver.tudelft.nl/uuid:c2511bacc2224cb29dc3bed247c73d1bThe characterisation, improvement and modelling aspects of Frost Salt Scaling of CementBased Materials with a High Slag Content
Copuroglu, O.0Bijen, J. (promotor); van Breugel, K. (promotor).Blast furnace slag cement concrete is used extensively in a number of countries. In comparison with OPC, it is particularly well known for its excellent performance in marine environments. One disadvantage of slag cement is its vulnerability to scaling under the combined load of freezingthawing and deicing salts. The current investigation was triggered by positive observations regarding certain grinding agents used in slag cement production to improve frost salt scaling resistance. The investigation was aimed at explaining the cause of this improvement, at finding alternative methods to improve scaling resistance and at developing a model that would be suitable for the simulation of frost salt scaling behaviour. The investigation conclusions are essentially confined to high slag cement, particularly type CEM III 42,5/B which has a 67% granulated slag content. The w/c ratio of the paste, mortar and concrete specimens is generally maintained at 0,45. Carbonation, known as the critical parameter in frost salt scaling, constituted the key area of interest. From previous investigations it is known that carbonation increases porosity and coarsens the pore system in slag cement paste while it actually does the reverse in OPC paste. In the light of literature a new hypothesis has been suggested that the transition zones, which are the weakest points in normalperformance cementbased materials, critically determine frost salt scaling resistance. These zones are even more indicative in the case of slag cement pastes because of the significant amount of transition zones that can be weakened by carbonation unlike with lowslag cement or OPC pastes. In the present investigation it was observed that carbonation causes significant slag cement paste shrinkage. It was especially the transition zones between nonreacted slag particles and hydration products that were found to be affected. Consequently this process leads to the paste having a coarser pore structure thus making it prone to greater water uptake when compared to noncarbonated slag cement paste or OPC paste. The new hypothesis was supported by findings emerging from the ESEM study. It was observed that frost salt scaling attack generates cracks in the microstructure which adhere to slagmatrix interfacial zones. This was confirmed by nanoindentation tests which demonstrated that carbonation creates a significant number of weak zones in the slag cement paste. In the case of OPC paste the picture that emerged was quite different. Natural air carbonation influences the mineral characteristics of cement pastes. The XRD study revealed that both slag cement paste and OPC paste possess various types of carbonate minerals, namely: calcite, aragonite and vaterite. However, accelerated carbonation creates overwhelmingly stable calcite phases in both types of cement pastes which are subsequently transformed from metastable carbonates. This observation draws attention to the role played by Ca(OH)2 in the good scaling resistance of OPC or lowslag cement systems. A curing regime, especially curing in lime water, appears to be favourable for slag cement materials. However, when compared to the effect of carbonation, the influence that the curing water quality has on scaling resistance is minimal. The contribution made by prolonged water curing to scaling resistance could have been greater but, as it was, the curing periods were limited to 5 weeks in the interests of remaining realistic and practical. The main goal of the project was to investigate the improvements in frost salt scaling resistance instigated by chemical grinding agents on the basis of the various positive results gained from the preliminary tests. The intention was to study the effects that the chem< icals had on the cement paste microstructure in order to understand frost salt scaling resistance in slag cement concrete and so as to contribute to structural improvements in that area. A microstructural comparative study was carried out on slag cement pastes that contain alkanolamines/hydrocarboxylates (the best performing ones) and diethylene glycolbased (the worst performing example) grinding agents. The most notable difference was in the pore structure of the paste samples. Alkanolamines/hydrocarboxylatesbased grinding agents were found to produce smaller pore sizes when compared to the ones containing diethylene glycol. This is consequently likely to give rise to higher carbonation resistance, lower water uptake and, eventually, to higher frost salt scaling resistance. However, the improvement achieved by alkanolamines / hydrocarboxylates is not sufficient to enhance the scaling resistance of the slag cement materials investigated in similar detail to OPC pastes. Another technique that was investigated was sodium monofluorophosphate (NaMFP) surface treatment. Remarkable improvements in frost salt scaling resistance were achieved by applying a 10% NaMFP solution to the surface of the carbonated slag cement paste and concrete. The scaling resistance improved by about 95% after 7 freezethawing cycles. Evidence was found pertaining to the reaction between NaMFP and metastable carbonates in the carbonated slag pastes. The application appears to significantly increase the tensile strength of the carbonated slag cement paste which is extremely favourable in terms of scaling resistance. The study finally resulted in the development of a new integrated model. The model mainly takes into account the gluespall theory and the hypothesis developed in this thesis and it runs on the Delft Lattice Model platform. The model successfully demonstrates the experimental observations and the crack patterns created by the scaling action. The gluespall theory suggests that cementbased material surface scaling derives from external ice layer cracking due to further cooling. Cooling consequently generates tensile stress due to the shrinkage of ice and causes cracking when the stress exceeds the tensile strength of the ice. This theory can explain many phenomena including the pessimum effect. On the basis of this theory, the new integrated model proved to be capable of simulating two important experimental observations. Under identical conditions the model can predict higher surface scaling at a 3% salt concentration level in relation to higher and lower values. The effect of ice layer thickness is furthermore found to be crucial with respect to frost salt scaling. Under identical material and environmental conditions the thicker external ice layer creates more damage than thinner ice layers. This observation was also successfully demonstrated with the new integrated model.frost salt scaling; slag; carbonation; microstructure; numerical modelling; CT02.30; Smart Sustainable Infrastructure; CT02.31.31; freezethaw resistance of BSFC concrete; Delft Cluster)uuid:d5142d5f5dcb4a7ab8aad81f474f03b6Dhttp://resolver.tudelft.nl/uuid:d5142d5f5dcb4a7ab8aad81f474f03b6Conversion of deterministic models into stochastic models: Approach and three worked out examples as guidance for application of data assimilationFBoogaard, H.F.P. van den; El Serafy, G.Y.; Weerts, A.H.; Gerritsen, H.Lnumerieke modellen; numerical modelling; dataassimilatie; data assimilation)uuid:2c91c8bdb0a44c3b86eef5ad8f1ea24eDhttp://resolver.tudelft.nl/uuid:2c91c8bdb0a44c3b86eef5ad8f1ea24eICharacterisation of fibre metal laminates under thermomechanical loadings
Hagenbeek, M.De Borst, R. (promotor)Fibre metal laminates, such as Arall or Glare, can offer improved properties compared to monolithic materials. Glare for example shows improved fatigue, residual strength, burnthrough, impact and corrosion properties with respect to aluminium 2024, together with a considerable weight reduction and competitive costs. A large research program has proven the technolo< gical readiness of Glare and the fibre metal laminate has seen its application today in the primary structure of the Airbus A380 super jumbo. However, the effect of temperature on the performance of the fibre metal laminates has not been fully characterised. Differences in thermal expansion coefficients cause residual stresses after curing of the laminate. In service the temperature of the aircraft skin can vary between 55 up to 70 C due to solar radiation and convection, which will affect the thermal and mechanical properties of Glare. A detailed understanding of the behaviour of these laminates is necessary for further improvement of their performance and durability. With the increase in complexity of structures and material systems, the need for powerful design tools becomes evident. In this thesis, the thermomechanical behaviour of fibre metal laminates has been characterised via experimental testing and numerical modelling. Experimental tests have been performed to determine the temperaturedependent thermal and mechanical behaviour of unidirectional (UD) glassfibre epoxy. Calculations based on these test results at room temperature and 80 C for the tension and shear stiffness of three different composite laminate layups showed a good agreement with experimental test results. The UD glassfibre epoxy data is used as input for the finite element model, together with aluminium 2024T3 data from the literature. Glare laminates with a special layup have been experimentally tested to determine the effect of temperature and mechanical loadings on the laminate characteristics. The test results show that the offaxis and temperature effect can give a reduction of 24% in ultimate strength at room temperature due to offaxis loading and a further reduction of 17% at 80 C temperature. For standard Glare from the literature, where tests at elevated temperature have only been performed in fibre direction, the strength and stiffness reductions are at most 12% compared to room temperature. Numerical simulation is a very powerful tool to investigate the behaviour of materials and structures. Therefore, a thermomechanical finite element model, based on a solidlike shell element and including thermal expansion and heat transfer, has been developed to capture the behaviour of Glare in a fully threedimensional state. The throughthethickness temperature and stress distributions can thereby be determined, which allows for a straightforward implementation of damage and plasticity models. Moreover, the solidlike shell element is ideal for thinwalled (aerospace) structures since it can have high aspect ratios without showing Poisson thickness locking, which occurs in standard continuum elements, and can have multiple layers in one element. To account for physical nonlinearities, a strain hardening model for the aluminium 2024T3 and an orthotropic damage model for the UD glassfibre epoxy layers in Glare are used. The strain hardening behaviour of aluminium has been modelled with a yield function based on an isotropic Von Mises plasticity formulation. An exponentially saturating hardening law has been assumed, which gives a good agreement with the experimental aluminium 2024T3 stressstrain curve. A returnmapping algorithm is used to project the stress back onto the yield surface when the stress state violates the loading condition. The concept of continuum damage mechanics is used, with a separate damage parameter for fibre and matrix, to describe the appearance of microcracks that lead to ultimate failure. The equivalent strain measure is obtained by rewriting the yield function of the orthotropic Hoffman plasticity model into a strainbased format. The damage parameters are directly implemented into the stiffness matrix to avoid undesirable coupling terms in the damage matrix. The simulations of the shear and tensile test in transverse direction show a good fit with the experimental curves for the UD glassfibre epoxy. The transient behaviour is captured by taking the heat capacity, inertia forces and damping into account. Park's method < is used to solve the dynamic system of equations. The good performance of the thermomechanical solidlike shell element and the transient solver have been demonstrated for a single element under thermomechanical loadings and the snapthrough of a cylindrical panel subjected to a concentrated load. Via a number of benchmark tests for practical applications the obtained numerical model is compared with the experimental test results. Bluntnotch test simulations have been performed on Glare33/20.4 and on a special Glare laminate (tested at 0, 45, 67.5, and 90 offaxis angle), which show a good agreement with experimental results. Simulations of offaxis tensile tests on a 0/90 composite, tensile tests on standard Glare laminates, and offaxis tensile tests on special Glare laminates with additional fibre layers in 45 and 45 direction, also showed a good agreement with experimental results. The thermomechanical solidlike shell element and the experimentally obtained material data, presented in this thesis, together create a powerful simulation tool for the effective and accurate characterisation of fibre metal laminates under thermomechanical loadings.fibre metal laminates; thermomechanical; numerical modelling; experiments; glassfibre epoxy; damage; plasticity; temperature; offaxis effectsAerospace Engineering)uuid:29af05030d0e4fb6a116ee28b618a7d9Dhttp://resolver.tudelft.nl/uuid:29af05030d0e4fb6a116ee28b618a7d98WAQUA  Delft3D online morfologie koppeling: EindrapportJagers, H.R.A.jnumerieke modellen; numerical modelling; computerprogramma's; software; riviermorfologie; river morphology)uuid:956ca27f2a11434f8cfc5fdd44c864aaDhttp://resolver.tudelft.nl/uuid:956ca27f2a11434f8cfc5fdd44c864aa;Sequence manager description in COSTA interface terminologySerafy, G.Y. El; Hummel, S.]numerieke modellen; numerical modelling; dataassimilatie; data assimilation; ontwerp; design)uuid:dad3797d14ff4cc6999595233a6bc1a5Dhttp://resolver.tudelft.nl/uuid:dad3797d14ff4cc6999595233a6bc1a52Voorspelinstrument duurzame vaarweg: Voorbereiding*Mosselman, E.; Sloff, C.J.; Jagers, H.R.A.uriviermorfologie; river morphology; numerieke modellen; numerical modelling; scheepvaart; shipping; Rijn; Rhein; Waal)uuid:65aec9d1a69842f49ce528194af3ebf1Dhttp://resolver.tudelft.nl/uuid:65aec9d1a69842f49ce528194af3ebf1SBepaling golfdrukken met SKYLLA: Vergelijking van berekende resultaten met metingenKuiper, C.; Doorn, N.steenzettingen; stone pitchings; numerieke modellen; numerical modelling; dijken; dikes; golfbrekers; breakwaters; golfbelasting; wave load)uuid:263e3065b3e44747bf867aff6b8e8005Dhttp://resolver.tudelft.nl/uuid:263e3065b3e44747bf867aff6b8e8005WVerkenning seiches in WAQUA: Studie naar waterstandslingeringen in het IJsselmeergebiedJong, M.P.C. de; Stolker, C.seiches; seiches; waterstanden; water levels; meren; lakes; opwaaiing; wind set up; IJsselmeergebied; numerieke modellen; numerical modelling)uuid:8a2aaa9c5e884508a2c04bc429e32bf1Dhttp://resolver.tudelft.nl/uuid:8a2aaa9c5e884508a2c04bc429e32bf1wA longterm morphological model for the whole Dutch Coast: Part 1: model formulation  part 2: application of the modelSteetzel, H.J.; Wang, Z.B.numerieke modellen; numerical modelling; sedimenttransportformules; sediment transport formulae; getijinlaten; tidal inlets; kustbeheer; coastal zone management; modelonderzoek; modelling)uuid:4fda20a41010440684f8537d3c1c110aDhttp://resolver.tudelft.nl/uuid:4fda20a41010440684f8537d3c1c110aEMorphological modelling of the Western Scheldt: Validation of Delft3DMKuijper, C.; Steijn, R.C.; Roelvink, J.A.; Kaaij, T. van der; Olijslagers, P.vmodelvalidatie; model validation; estuariene morfologie; estuarine morphology; numerieke modellen; numerical modelling)uuid:974306ce9940426b9d6ab956551958f8Dhttp://resolver.tudelft.nl/uuid:974306ce9940426b9d6ab956551958f8HKader hydraulische analyse bovenrivierengebied: PKBstudie deelrapport A
Crebas, J.\hydraulica; hydraulics; bovenrivieren; upper rivers; numerieke modellen; numerical modelling)uuid< :304fa85dbc4146d3948c0e91bd91a6abDhttp://resolver.tudelft.nl/uuid:304fa85dbc4146d3948c0e91bd91a6abYNumerical modelling of vanes and screens; development of vanes and screens in Delft3DMORMFlokstra, C.; Jagers, H.R.A.; Wiersma, F.E.; Mosselman, E.; Jongeling, T.H.G.jbed vanes, screens; river morphology; river flow; river engineering; river management; numerical modelling
Delft Cluster)uuid:b940c337a6ba4fddac64a6a9ee8d4125Dhttp://resolver.tudelft.nl/uuid:b940c337a6ba4fddac64a6a9ee8d4125NThe HydroSupport: An ElastoHydrostatic Thrust Bearing with Mixed LubricationVan Ostayen, R.A.J.Rixen, D.J. (promotor)The "classic" solution for the support of a translating lockgate, the wheelonrail support, has relatively high construction as well as inspection and maintenance costs. An alternative support which has previously been developed for use in the Prins WillemAlexander lock is the socalled "hydrosupport", a hydrostatic thrust bearing that slides on an elastic track and is connected to the lockgate by an elastic support. After a runningin period, this support shows low friction. In this thesis several methods to further improve this type of support have been studied. The direction of these improvements has been guided by the following observation: The typical dimensions and manufacturing standards of the bearing and the track are in conflict. On the large scale of a lockgate, a hydrostatic bearing typically requires sliding surfaces with a surface waviness smaller than 0.1 mm/m. However, the track can not be manufactured easily with a surface waviness smaller than typically 0.5 mm/m. This means that contact between the bearing and track will be inevitable. In this thesis, methods have been studied to use this contact in order to improve the performance (namely reduced flow rate and pumping power) of the hydrosupport. A mathematical model has been developed, incorporating the elastic deformation of the track, bearing and support, and the partial contact and hydrostatic lubricating film between the bearing and track. Several track waviness models have been developed, among others a random periodic surface waviness. Furthermore the concept of an "ideal" support has been introduced, which under compression exhibits a reaction pressure equal to the hydrostatic pressure in a lubricating film with a constant height. Not only has this mathematical model been developed in this thesis, it has also been implemented in a numerical program and used to test the influence of a number of design parameters on the performance of a hydrosupport. It has been shown that, using the contact between the sliding surfaces, the tilting stiffness of a bearing with 1 small recess is comparable to that of the 4recess bearing. Additionally, a 1 recess bearing requires a smaller or even no restrictor and therefore a smaller supply pump. Furthermore, it has been shown that the hydrofender with its large length/width ratio has comparable or even better performance than the circular hydrofoot, while requiring a narrower track. In addition, it has been shown that, for a given load, a hydrofender with a small bearing thickness and with a standard elastic support design exhibits a smaller flow rate and larger bearing coefficient than a bearing with an ideal support design. Finally, using the results of these parametric studies, a procedure has been developed for the design of hydrosupports. This procedure has been used in two examples.melastohydrostatic lubrication; mixed lubrication; bearing design; numerical modelling; finite element methodPonsen & Looijen BV"Design, Engineering and Production)uuid:adb5ef04f69b49a38d41f17678ad7241Dhttp://resolver.tudelft.nl/uuid:adb5ef04f69b49a38d41f17678ad7241!Improvement of Danube delta modelHooijer, A.; Bakkum, R.C.J.numerieke modellen; numerical modelling; hydrodynamica; hydrodynamics; waterkwaliteit; water quality; estuaria; estuaries; Donau; Danube River)uuid:a33ed8339e2340988e98f30341d23f0fDhttp://resolver.tudelft.nl/uuid:a33ed8339e2340988e98f30341d23f0fMorphology of pits, channels and t< renches  part III: Investigation of the longshore and crossshore impact of various pit designs,Rijn, L.C. van; Walstra, D.J.R.; Boer, G. dekustmorfologie; coastal morphology; zandwinning; sand dredging; numerieke modellen; numerical modelling; morfodynamica; morphodynamics)uuid:5247bd4a29a04434b169b26ec36bd68aDhttp://resolver.tudelft.nl/uuid:5247bd4a29a04434b169b26ec36bd68aDControls on shallowmarine stratigraphy; a processresponse approachStorms, J.E.A.Kroonenberg, S.B. (promotor)^This thesis is concerned with the interface between land and sea. The interaction of coastal evolution and the sedimentary record, in this case of a wavedominated coastal system, over geological timescales (< 105 y) is investigated in relation to their forcing parameters such as relative sealevel change, sediment supply, and wave climate. The preserved sediments record the dynamics of the coastal system in stacked but uncomplete sediment packages, which formed as the coastline migrated in landward or seaward direction resulting from erosion and deposition of sand and clay along the shallow parts of the coastal system (< 100 m waterdepth). If we want to understand coastal evolution over geological timescales, we must be able to read or interpret the stratigraphic record. Reconstructing coastal evolution from preserved shallowmarine stratigraphy is very difficult. The sediment record is not complete due to phases of erosion and we know little about past local changes in relative sea level, sediment supply, and wave climate. Also, the individual effects of these variables on coastal evolution and the stratigraphic record are poorly known. As the processes that drive coastal evolution, and therefore the resulting sedimentary record, act over thousands of years it is not possible to simply take measurements and make observations. Nevertheless, the stratigraphic record is the key to understand coastal evolution over geological timecales because it is the only physical evidence. Therefore a two dimensional numerical model has been developed which simulates the processes which are presumably important for coastal evolution and the formation of the stratigraphic record over long timescales. This model, its development and some applications are described in this thesis with the goal of increasing our understanding of coastal dynamics over geological timescales.]numerical modelling; shoreface; barrier island; progradation; transgression; sealevel change)uuid:0f15435046b9452a9b1175103b60f574Dhttp://resolver.tudelft.nl/uuid:0f15435046b9452a9b1175103b60f574SNumerical modelling of shipinduced water motions: Feasibility and validation studyHVerheij, H.J.; Raven, H.C.; Doorn, N.; Borsboom, M.J.A.; Lambeek, J.J.P.astromingsmodellen; flow models; numerieke modellen; numerical modelling; golftheorie; wave theory)uuid:26e9cbb14b8b4138ae6e200ed63645d2Dhttp://resolver.tudelft.nl/uuid:26e9cbb14b8b4138ae6e200ed63645d2)Beoordeling nieuwe overlaatroutines WAQUAKester, J.A.T.M. vanuenergieverliezen; head losses; overlaten; spillways; rivierafvoer; discharge; numerieke modellen; numerical modelling)uuid:75d667f674914c2c8829c3a2be581102Dhttp://resolver.tudelft.nl/uuid:75d667f674914c2c8829c3a2be581102xLowexceedance wave overtopping events: Estimates of wave overtopping parameters at the crest and landward side of dikesvan Gent, M.R.A.wave overtopping; wave runup; dikes; coastal structures; shallow foreshores; breaching of dikes; waterlayer thickness; velocities; numerical modelling; physical model tests)uuid:011694ee394b44f59866981513bdd780Dhttp://resolver.tudelft.nl/uuid:011694ee394b44f59866981513bdd780_A new vertical approximation for the numerical simulation of nonhydrostatic free surface flows$Stelling, G.S.; Kester, J.A.T.M. vanhydrodynamica; hydrodynamics; interpolatie; interpolation; numerieke modellen; numerical modelling; golftheorie; wave theory)uuid:b9d225e628044fecac85c510c7bd8880Dhttp://resolver.tudelft.nl/uuid:b9d225e628044fecac85c510c7bd8880DNumerical modelling of shipinduced water motions: < Feasibility study7Verheij, H.J.; Raven, H.C.; Doorn, N.; Borsboom, M.J.A.)uuid:d55c64d31f454711bc26fe7c7f3f6cc5Dhttp://resolver.tudelft.nl/uuid:d55c64d31f454711bc26fe7c7f3f6cc55Randvoorwaarden in WAQUA en TRIWAQ: Syllabus workshopFKester, J.A.T.M. van; Stelling, G.S.; Bijlsma, A.C.; Kaaij, T. van der[ondiepwatervergelijkingen; shallow water equations; numerieke modellen; numerical modelling)uuid:6c49bcf27a79437d99351c4e7513aff6Dhttp://resolver.tudelft.nl/uuid:6c49bcf27a79437d99351c4e7513aff6;On the use of a horizontal ke model for shallowwater flow"Bijvelds, M.D.J.P.; Goede, E.D. delturbulentieviscositeit; eddy viscosity; ondiep water; shallow water; numerieke modellen; numerical modelling)uuid:4ded3e1fed2f4e2fad65b04a5e856f2eDhttp://resolver.tudelft.nl/uuid:4ded3e1fed2f4e2fad65b04a5e856f2eUitbreiding DelftFLS / koppeling met Sobek  deelrapport: Delft1D2D tests implementatie koppeling tussen DelftFLS en Sobek Lowland:Lorenz, N.; Dhondia, J.F.; Kernkamp, H.W.J.; Laguzzi, M.M.Fdijkdoorbraken; dike breaches; numerieke modellen; numerical modelling)uuid:1b04609e0408485cba2ad415f13c418cDhttp://resolver.tudelft.nl/uuid:1b04609e0408485cba2ad415f13c418cYUitbreiding DelftFLS / koppeling met Sobek  deelrapport: Delft1D2D systeemdocumentatieCrebas, J.I.; Dhondia, J.F.Fcomputerprogramma's; software; numerieke modellen; numerical modelling)uuid:2960591ee9754655baa9d9cb77ee8673Dhttp://resolver.tudelft.nl/uuid:2960591ee9754655baa9d9cb77ee86739Modification firstguess SWAN & Bench mark tests for SWANRis, R.C.; Somers, C.M.G.golfmodellen; wave models; numerieke modellen; numerical modelling; numerieke analyse; numerical analysis; numerieke methoden en technieken; numerical methods and techniques)uuid:2ca9709b2c804fb5ba188e2bc21ababcDhttp://resolver.tudelft.nl/uuid:2ca9709b2c804fb5ba188e2bc21ababcA review of the physical formulations in SWAN: Evaluation of the chosen formulations for the modelling of physical processesDingemans, M.W.golfrefractie; wave refraction; golfopwekking; wave generation; numerieke modellen; numerical modelling; golfvervorming; wave deformation)uuid:ed11cc74a1fd4745a31c00b5ab2af0bfDhttp://resolver.tudelft.nl/uuid:ed11cc74a1fd4745a31c00b5ab2af0bfNSOBEK hydrodynamic model Danube Delta, Romania: Report on technical assistance
Laguzzi, M.M.rmariene hydrodynamica; marine hydrodynamics; numerieke modellen; numerical modelling; Donau; Danube River; Romania)uuid:aee8578ec2bb481395eab6ede55a44abDhttp://resolver.tudelft.nl/uuid:aee8578ec2bb481395eab6ede55a44abSediment transport and fluid mud flow: Physical mud properties and parameterization of vertical transport processes SILTMAN ; setup of a POINTMUD MODEL%Winterwerp, J.C.; Uittenbogaard, R.E.sedimenttransport in estuaria; sediment transport in estuaries; numerieke modellen; numerical modelling; sedimentconcentratie; sediment concentration; interne golven; internal waves)uuid:832ff86e640f41eca3cd0cd6247c7ed4Dhttp://resolver.tudelft.nl/uuid:832ff86e640f41eca3cd0cd6247c7ed4'Kustlocatie: Morfologische berekeningen@Bosboom, J.; Aarninkhof, S.G.J.; Roelvink, J.A.; Walstra, D.J.R.kustmorfologie; coastal morphology; hydrodynamica; hydrodynamics; morfodynamica; morphodynamics; numerieke modellen; numerical modelling)uuid:6a73f423aa9e44688a1e3b7045d03920Dhttp://resolver.tudelft.nl/uuid:6a73f423aa9e44688a1e3b7045d03920R3D wavecurrent interaction: CLvortex force, simulation of waveflume experiments:Kester, J.A.T.M. van; Uittenbogaard, R.E.; Dingemans, M.W._numerieke modellen; numerical modelling; turbulentie; turbulence; wervelingen; vortices, swirls)uuid:91e600ce2f9e486f82817e8715991ed5Dhttp://resolver.tudelft.nl/uuid:91e600ce2f9e486f82817e8715991ed5Hamiltonian formulation of water waves, part 3: Highorder description, wave breaking formulation, and numerical implementationsDingemans, M.W.; Otta, A.K.Bnumerieke modellen; numerical modelling; golfmodellen; wave models)uuid:c5120cfad3324878bb7aaedae62d5603Dhttp://resolver.tudelft.nl/uuid:c5120cfad33248< 78bb7aaedae62d5603gSchaalrelaties: Nadere analyse schaalrelaties dwarstransport via formulering pragmatisch transportmodelSteetzel, H.J.schaalmodellen; scale models; schaalregels; scaling rules; schaaleffecten; scale effects; numerieke modellen; numerical modelling)uuid:954b1a19b62e42d08719f60826b74ed3Dhttp://resolver.tudelft.nl/uuid:954b1a19b62e42d08719f60826b74ed33Dnumerieke modellering gedeeltelijk geopende Haringvlietsluizen: Sluisformuleringen en testberekeningen voor implementatie in TRIWAQ KEPS02, fase 1$Kester, J.A.T.M. van; Stelling, G.S.Haringvliet; numerieke modellen; numerical modelling; zoutwaterindringing; salt water intrusion; stoftransport; mass transport; coordinatenstelsels; coordinate systems)uuid:9854e9be43264f5aa7801787b89e89d5Dhttp://resolver.tudelft.nl/uuid:9854e9be43264f5aa7801787b89e89d5AGRICOM gebruikershandleidingPrinsen, G.F.; Verschuur, E.A.'numerieke modellen; numerical modelling)uuid:834924ba1835482dad7c6b0ed13c76f4Dhttp://resolver.tudelft.nl/uuid:834924ba1835482dad7c6b0ed13c76f4D3D temperatuurmodellering voor het Continental Shelf Model in TRIWAQGoede, E.D. denumerieke modellen; numerical modelling; temperatuur; temperature; numerieke methoden en technieken; numerical methods and techniques; Noordzee)uuid:daa641621ddc4a07a035a5cac9c0d423Dhttp://resolver.tudelft.nl/uuid:daa641621ddc4a07a035a5cac9c0d423CExtension of the grazing module of the phytoplankton model BLOOM IIVat, M.P. van der^zooplankton; zooplankton; fytoplankton; phytoplankton; numerieke modellen; numerical modelling)uuid:dea5cec74098404ab273fcf12aada406Dhttp://resolver.tudelft.nl/uuid:dea5cec74098404ab273fcf12aada406SUltrasonic scattering from a hydraulic fracture: Theory, computation and experiment Savic, M.Ziolkowski, A.M. (promotor)Shydraulic fractures; ultrasonic monitoring; numerical modelling; finitedifferences)uuid:7e93ce77475a4462ae6a7af9ce07ba8eDhttp://resolver.tudelft.nl/uuid:7e93ce77475a4462ae6a7af9ce07ba8eDanube Environmental Programme  Hron river basin preinvestment study: Water quality and Decision Support System (DSS) subprojectHron; waterkwaliteit; water quality; beleidsondersteuning; policy support; hydrologie; hydrology; numerieke modellen; numerical modelling)uuid:b36f7b47f0b6448394c7fe1148ae2781Dhttp://resolver.tudelft.nl/uuid:b36f7b47f0b6448394c7fe1148ae2781o3Dnumerieke modellering Haringvlietsluizen: Sluisformuleringen voor het Haringvlietcomplex en testberekeningen4Stelling, G.S.; Kester, J.A.T.M. van; Hulsen, L.J.M.pHaringvliet; sluizen; sluices; numerieke modellen; numerical modelling; ZuidHolland; riviermonden; river mouths)uuid:efc8b45950d44f15ad937e2ea363e4dcDhttp://resolver.tudelft.nl/uuid:efc8b45950d44f15ad937e2ea363e4dc6Een voorstudie naar mogelijke versnellingen van TRIWAQGoede, E.D. de; Stelling, G.S.lnumerieke modellen; numerical modelling; kwaliteitsbeheersing; quality control; riviermodellen; river models)uuid:25e682698a1245ee945ce20df79a1e0bDhttp://resolver.tudelft.nl/uuid:25e682698a1245ee945ce20df79a1e0brSWITCH, a model for sedimentwater exchange of nutrients (part 3): Reformulation and recalibration for Lake Veluwe
Smits, J.G.C.numerieke modellen; numerical modelling; sedimentwater uitwisseling; sedimentwater exchange; Veluwemeer; eutrofiering; eutrophication; nutrienten; nutrients; sedimenten; sediments)uuid:cab5abad774347cda58418068bb9abb9Dhttp://resolver.tudelft.nl/uuid:cab5abad774347cda58418068bb9abb93The Fatigue Behaviour of Multiplanar Tubular JointsRomeijn, A.Circular hollow sections are frequently used in structures subjected to fatigue loading such as bridges, offshore structures and cranes. These sections are generally connected by direct welding of the sections to each other. For the design of these welded connections, information is required on the fatigue behaviour. Especially for multiplanar connections, insufficient data is available regarding stress concentration factors (SCFs) which affect the fatigue life. Also, there is no standard for determining the fa< tigue strength of welded tubular joints. This has led to 3 divergence in the methods being used both experimentally as well as numerically. This publication presents the results of experimental and numerical research on the fatique strength of welded tubular joints. The research projects aim to provide guidelines and design recommendations on the fatigue strength of welded tubular joints, to be proposed for inclusion in international codes of practice such as Eurocode 3.welded tubular joint; lattice girder; numerical modelling; fatigue; hot spot stress; uniplanar; multiplanar stress (strain) concentration factorDelft University of TechnologyStructural Mechanics)uuid:79377d9ab68f47c5a792456a60555a20Dhttp://resolver.tudelft.nl/uuid:79377d9ab68f47c5a792456a60555a20:Bresgroei  deel IV: Pragmatische modellering breedtegroeiRijkswaterstaatBHet voorliggende onderzoek heeft tot doel inzicht te verschaffen in de wijze waarop het verloop van het instroomdebiet en de binnenwaterstand afhangen van de breedtegroei van de bres. De resultaten van deze verkenning geven aan in hoeverre (of en zoja, met welke middelen) nader onderzoek naar het proces van bresgroei gewenst is en wat de optimale invulling ervan is. Na een nadere karakterisering van het breedtegroeiproces is een onderverdeling gegeven in verschillende te onderkennen fasen. Vervolgens is, voor een situatie met constante buitenwaterstand, een analytische oplossing gegeven voor de ontwikkeling van respectievelijk de bresbreedte, het bresdebiet en de binnenwaterstand. Hieruit kan de gevoeligheid van de bresgroeisnelheid op bijvoorbeeld de uiteindelijke breedte van het gat en de totale tijdsduur worden afgeschat. Implementatie van de basisformuleringen in een eenvoudig mathematisch model (BREACHlD) maakt het doorrekenen van de ontwikkelingen voor een nietconstante buitenconditie mogelijk. Hiermee zijn voor het geval van een fictieve polder enkele verkennende berekeningen uitgevoerd waarbij de te verwachte spreiding in het resultaten is gerelateerd aan de onbekendheid met het onderliggende proces van bresgroei. Bij deze interpretatie zijn ook de resultaten van berekeningen met het RAMPmodel van de DWW betrokken.mdijkdoorbraken; dike breaches; waterkeringen; flood protection works; numerieke modellen; numerical modelling)uuid:316f70938cba41dc852f47e51c343c91Dhttp://resolver.tudelft.nl/uuid:316f70938cba41dc852f47e51c343c91&Invers sedimenttransportmodel: Ontwerp(Koster, A.W.J.; Boogaard, H.F.P. van den]sedimenttransportmodellen; sediment transport models; numerieke modellen; numerical modelling)uuid:d63f03f79a9f4492993413427d01aa7aDhttp://resolver.tudelft.nl/uuid:d63f03f79a9f4492993413427d01aa7a.Invers sedimenttransportmodel: Definitiestudie)uuid:22a106301d754bf2b03b78cb7ea11cffDhttp://resolver.tudelft.nl/uuid:22a106301d754bf2b03b78cb7ea11cffFysisch validatie CLODESAkkerman, G.J.numerieke modellen; numerical modelling; afsluitdammen; closure dams; bodemverdediging; bed protection; stortsteen; rubble; stroomsnelheidsmeting; current velocity measurement; drempels; bars; sluitgatdichting; gap closure)uuid:f3d4362f01e04666b309f84bb18178bcDhttp://resolver.tudelft.nl/uuid:f3d4362f01e04666b309f84bb18178bcMorphodynamic response of a tidal inlet after a reduction in basin area: Numerical simulation of hydro and morphodynamics of the mesotidal inlet "Het Friesche Zeegat"Steijn, R.C.; Hartsuiker, G.hydrodynamica; hydrodynamics; simulatie; simulation; kustmorfologie; coastal morphology; numerieke modellen; numerical modelling; Waddenzee; getijinlaten; tidal inlets)uuid:bcb4728663714645b9ac0a25cdcb448fDhttp://resolver.tudelft.nl/uuid:bcb4728663714645b9ac0a25cdcb448f)Study of bedform geometry in large riversJulien, P.Y.numerieke modellen; numerical modelling; Rijn; Rhein; rivieren; rivers; duinen; dunes; hoogwaterafvoer; flood discharge; beddingvormen; bed forms; Maas; Meuse)uuid:f13f88b35aa34cbfa625c1f29689121bDhttp://resolver.tudelft.nl/uuid:f13f88b35aa34cbfa625c1f29689121bBelasting van de Nederlandse bodem met meststoff< en, ten behoeve van de voor de Commissie Stikstof uitgevoerde landelijke berekeningen van de stikstofuit en afspoeling vanuit de landbouwMenke, M.A.bodemverontreiniging; soil pollution; Nederland; numerieke modellen; numerical modelling; stikstof; nitrogen; mest; manure; bodembescherming; soil protection)uuid:00e23f2eff934fa3b0ed16f01b5f78bcDhttp://resolver.tudelft.nl/uuid:00e23f2eff934fa3b0ed16f01b5f78bcPMorphological modelling in estuaries and tidal inlets, part 1: Literature surveyKarssen, B.; Wang, Z.B.kustmorfologie; coastal morphology; numerieke modellen; numerical modelling; literatuuronderzoek; literature searching; estuariummodellen; estuary models; getijinlaten; tidal inlets)uuid:fcca68a0ba744e70b8967f3b23d3748cDhttp://resolver.tudelft.nl/uuid:fcca68a0ba744e70b8967f3b23d3748c{SWITCH, a model for sedimentwater exchange of nutrients (part 1+2): Formulation ; calibration, application for Lake Veluwe)uuid:fcb2800ebe28428a82e0ca60358c96f6Dhttp://resolver.tudelft.nl/uuid:fcb2800ebe28428a82e0ca60358c96f6MUniformering van WAQUA rekenroutines inclusief droogvallen en weer onderlopenStelling, G.S.onumerieke modellen; numerical modelling; computerprogramma's; software; stromingsvergelijkingen; flow equations)uuid:bea91ea52cd048f6bc563e9ef4c4d5a3Dhttp://resolver.tudelft.nl/uuid:bea91ea52cd048f6bc563e9ef4c4d5a3RMorphodynamic modelling for a tidal inlet in the Wadden Sea: "Het Friesche Zeegat"
Wang, Z.B.~kustmorfologie; coastal morphology; getijinlaten; tidal inlets; numerieke modellen; numerical modelling; Waddenzee; Friesland)uuid:c31f6d9ebf264550b062163e720223d0Dhttp://resolver.tudelft.nl/uuid:c31f6d9ebf264550b062163e720223d09DELWAQSLIB2Dv programmalijn: Stand van zaken medio 1990Hulsen, L.J.M.Enumerieke modellen; numerical modelling; slibtransport; mud transport)uuid:28fc6192ed2a4f19b2343ab9eb3ed97dDhttp://resolver.tudelft.nl/uuid:28fc6192ed2a4f19b2343ab9eb3ed97d=De storm van 1953 gesimuleerd met het Continental Shelf ModelGerritsen, H.; Ronde, J.G. denstormvloeden; storm surges; simulatie; simulation; numerieke modellen; numerical modelling; North Sea; Zeeland)uuid:98eded3d95df4a0ba2a4be4029a08a73Dhttp://resolver.tudelft.nl/uuid:98eded3d95df4a0ba2a4be4029a08a73GInvestigation of surgetide interaction in the storm surge model CSM16*Bijlsma, A.C.; Bruinsma, R.; Vatvani, D.K.stormvloeden; storm surges; numerieke modellen; numerical modelling; North Sea; getijden; tides; getijvoorspelling; tide prediction)uuid:345548c4b0774c57a605c66b648f4712Dhttp://resolver.tudelft.nl/uuid:345548c4b0774c57a605c66b648f4712fZandwatermengselstromingen  het storten van zand onder water, 6: Wiskundig model terrasvormig stortMastbergen, D.R.Jnumerieke modellen; numerical modelling; zandwatermengsels; sand slurries)uuid:90d4f48f20c84c598eb8924042ab434eDhttp://resolver.tudelft.nl/uuid:90d4f48f20c84c598eb8924042ab434eZuurstofmodel Westerschelde!Ouboter, M.R.L.; Gils, J.A.G. vanzestuaria; estuaries; numerieke modellen; numerical modelling; Zeeland; Westerschelde; stikstof; nitrogen; zuurstof; oxygen)uuid:ee1211e73b12430c99e9b0bf2db295a8Dhttp://resolver.tudelft.nl/uuid:ee1211e73b12430c99e9b0bf2db295a8Verification of numerical wave propagation models with laboratory measurements: HISWA verification in the directional wave basinDeltaresLgolfvoortplanting; numerical modelling; numerieke modellen; wave propagation)uuid:daf2003479904ad99f443a8e9f85880aDhttp://resolver.tudelft.nl/uuid:daf2003479904ad99f443a8e9f85880aGSchepen in dwarsstroom: Wiskundig gevoeligheidsonderzoek (samenvatting)scheepsmanoeuvres; ship manoeuvres; scheepsbewegingen; ship motions; dwarsstroming; transverse flow; numerieke modellen; numerical modelling)uuid:88ab52046191493e99dcb24d25a4ff17Dhttp://resolver.tudelft.nl/uuid:88ab52046191493e99dcb24d25a4ff17ZBLOOM II: A mathematical model to compute phytoplankton blooms : user's manual : release 2
Bigelow, J.H.qfytoplankton; limnological models; limnologische modellen; numerical modelling; numerieke modelle< n; phytoplankton)uuid:8c5f7e95ffd148feaa5a67add49c6000Dhttp://resolver.tudelft.nl/uuid:8c5f7e95ffd148feaa5a67add49c6000The phytoplanktonnutrient model SEAWAQ and its application to the southern bight of the North Sea: Report on investigationsVerhagen, J.H.G.~ecosystemen; ecosystems; fytoplankton; Noordzee; numerical modelling; numerieke modellen; nutrienten; nutrients; phytoplankton)uuid:d5269b0bd42a4127a48cd68dd7bfd6b7Dhttp://resolver.tudelft.nl/uuid:d5269b0bd42a4127a48cd68dd7bfd6b7Deiningsvoorspelling m.b.v. ARMAX modellen ter ondersteuning van het toelatingsbeleid voor de EuroMaasgeul en van de werkbaarheidsverwachtingen in de OosterscheldePoulisse, H.N.J.udeining; golfenergie; golfvoorspelling; numerical modelling; numerieke modellen; swell; wave energy; wave forecasting)uuid:81f29778a3b5457899de7217b452907eDhttp://resolver.tudelft.nl/uuid:81f29778a3b5457899de7217b452907eXCoastal morphology: Flow formulation in mathematical models of 2DH morphological changesVriend, H.J. deKkustmorfologie; coastal morphology; numerieke modellen; numerical modelling)uuid:ab9477fc19e64d29a6ea4f4a983af299Dhttp://resolver.tudelft.nl/uuid:ab9477fc19e64d29a6ea4f4a983af299mCompartimentering Oosterschelde: Berekening snelheidsvertikalen bij zandsluitingsfasen : notitie berekeningenHartsuiker, G.]closure (by dumping); geleidelijke sluiting; numerical modelling; numerieke modellen; Zeeland)uuid:23ded1d3d9e74e09b7fd7a5ab3edfdeeDhttp://resolver.tudelft.nl/uuid:23ded1d3d9e74e09b7fd7a5ab3edfdeeHaalbaarheidsstudie naar de modellering van zware metalen met het model CHARON door toepassing op het systeem KetelmeerIJsselmeerStutterheim, E.; Smits, J.G.C.zware metalen; heavy metals; numerieke modellen; numerical modelling; waterverontreiniging; water pollution; IJsselmeer; Ketelmeer)uuid:480c65c85c94401ab1db75a77734af3fDhttp://resolver.tudelft.nl/uuid:480c65c85c94401ab1db75a77734af3foThe influence of nutrient availability on the ecosystem behaviour of Lake Grevelingen: Report on investigationsVries, I. detlimnological models; limnologische modellen; numerical modelling; numerieke modellen; nutrienten; nutrients; Zeeland)uuid:69082fd5664646c2835b739930235aa2Dhttp://resolver.tudelft.nl/uuid:69082fd5664646c2835b739930235aa2OStormvloedkering Oosterschelde: Modellering lokale golfvariaties rond de kering
Deelen, C.~golfmodellen; golfvoorspelling; numerical modelling; numerieke modellen; Oosterschelde; wave forecasting; wave models; Zeeland)uuid:81dea395d3f949188eb8d9fd8e13a2e4Dhttp://resolver.tudelft.nl/uuid:81dea395d3f949188eb8d9fd8e13a2e4]Fundamenteel onderzoek naar voorspellen van ontgrondingen: Voorstel voor voortgezet onderzoekWijngaarden, N.J. vannumerical modelling; numerieke modellen; ontgronding door uitstroming; ontgrondingsmodellen; outflow induced scour; scour models)uuid:ecd9504eff4146eeaa966ac240b54b8aDhttp://resolver.tudelft.nl/uuid:ecd9504eff4146eeaa966ac240b54b8aKustmorfologie: Numeriek model voor het berekenen van kustlijnveranderingen onder invloed van getij en golfgedreven stroming (nlijn model)Boer, S.xkustmorfologie; coastal morphology; kustlijnontwikkeling; coastline development; numerieke modellen; numerical modelling)uuid:87b1d5e2736749efa65a39ef29d160c7Dhttp://resolver.tudelft.nl/uuid:87b1d5e2736749efa65a39ef29d160c7IA Numerical Model for Flow and Sediment Transport in AlluvialRiver Bends'Nakato, T.; Kennedy, J.F.; Vadnal, J.L.TU Delft/ The principal features of the numerical model developed herein for calculation of flow and sedimenttransport distributions in alluvialriver bends may be summarized as follows: i. The secondaryflow strength and the bed topography are uncoupled from the calculation of distributions of lateral shift velocity and streamwise velocity. This is accomplished by, first, calculating the secondaryflow strength on the basis of conservation of flux of momentofmomentum, and, second, determining the bed topography on the basis of radial force equilibrium of the moving bed layer. ii. The distributions< of lateral shift velocity and depthaveraged streamwise velocity are calculated, for the warped channel determined as described in step i above, from the depthintegrated equations expressing conservation of mass and momentum. It was concluded that for flows which satisfy (24), it is not necessary to include the third conservation equation, that for radialdirection momentum, or to iterate among three equations to obtain a solution. The numerical scheme utilizes the backward finitedifference method, and evaluates transverse and streamwise distributions of the radial massshift velocity and the depthaveraged streamwise velocity. Numerical simulations utilizing the model developed were made for one laboratory flow, two Sacramento River flows, and three different idealized channel bends. The principal conclusions obtained from the simulations are as follows: i. Generally satisfactory agreement between computed and measured results was obtained by utilizing error tolerances of E_U and E_V of 2% and 0.2%, respectively. In the absence of better information, it is recommended that alpha = 1.00 and beta = 3.50 be utilized. In instances where actual field data are available on the rate of development and equilibrium values of S_T, alpha and beta should be adjusted on the basis of the data. ii. The most costeffective squaregrid size is approximately equal to the mean flow depth. iii. The computer program is capable of simulating flow in multiplebend channels with stepwisevarying radius of curvature. On the basis of the numerical simulations, it was found that the maximum permissible stepwise change of centerline curvature for which the program will run is about 2.5% in the case of increasing Rc and about 10% for decreasing Rc.Nnumerical modelling; sediment transport; alluvial river; river bend; modelling$Iowa Institute of Hydraulic Research)uuid:640b88d731784a239be764646a0b2ce8Dhttp://resolver.tudelft.nl/uuid:640b88d731784a239be764646a0b2ce8jVerification of numerical wave propagation models with field measurements: CREDIZ verification Haringvlietxgolfvoortplanting; Haringvliet; numerical modelling; numerieke modellen; site surveying; veldonderzoek; wave propagation)uuid:33aea2a62f854c938b274407540a2681Dhttp://resolver.tudelft.nl/uuid:33aea2a62f854c938b274407540a2681?Kustmorfologie: Stand van zaken betreffende het KC/KL programmaTilmans, W.M.K.)uuid:618ddf5b19eb4f33b697defc8bfc6601Dhttp://resolver.tudelft.nl/uuid:618ddf5b19eb4f33b697defc8bfc6601jStormvloedkering Oosterschelde: Ervaringen met het uitvoeren van WAQUAberekeningen op de Univac : notitiexflow patterns; numerical modelling; numerieke modellen; storm surge barriers; stormvloedkeringen; stroombeelden; Zeeland)uuid:283d08f1da6d4b0f97c10c6bfe202f2bDhttp://resolver.tudelft.nl/uuid:283d08f1da6d4b0f97c10c6bfe202f2bCompartimentering Oosterschelde: Modellering stroombeeld in het sluitgat van het Markiezaat met behulp van WAQUAmodellen : DOOS3model : notitie berekeningenhclosure gaps; flow patterns; numerical modelling; numerieke modellen; sluitgaten; stroombeelden; Zeeland)uuid:32baa71395e24fdfa6edd4be429d0721Dhttp://resolver.tudelft.nl/uuid:32baa71395e24fdfa6edd4be429d0721bToetsing van het computerprogramma ZANTRI aan een hydraulisch onderzoek voor onttrekking van waterKerssens, P.J.M.A.@numerieke modellen; numerical modelling; bodemligging; bed level)uuid:2097590e82864949aebb36919a2080ccDhttp://resolver.tudelft.nl/uuid:2097590e82864949aebb36919a2080ccnKustmorfologie: Bodemliggingsontwikkeling bij quasistationaire tweedimensionale horizontale stroming: analyseVriend, H.J. de.)uuid:6163189a652f48c09d131a476be2ecefDhttp://resolver.tudelft.nl/uuid:6163189a652f48c09d131a476be2eceftEen getijberekening voor de zuidelijke Noordzee met verschillende numerieke modellen: Vergelijking van de resultaten
Verboom, G.K.Ugetijberekening; tidal computation; numerieke modellen; numerical modelling; Noordzee)uuid:5ca5f0699ee34a10bd77d1069c5d0b30Dhttp://resolver.tudelft.nl/uuid:5ca5f0699ee34a10bd77d1069c5d0b30WMathemat< ical simulation of algae blooms by the model BLOOM II: Report on investigations Los, F.J.algae; algen; limnological models; limnologische modellen; numerical modelling; numerieke modellen; plankton; plankton; Zeeland)uuid:52467c5c786b4b1cb68437d69996136cDhttp://resolver.tudelft.nl/uuid:52467c5c786b4b1cb68437d69996136cWaterkwaliteitsmodel IJsselmeer: Onderzoek naar de invloed van een aantal mogelijke beheersmaatregelen op de eutrofiring van het IJsselmeerPRooij, N.M. de; Smits, J.G.C.; Los, F.J.; Stans, J.C.; Groot, B.G. de; Klomp, R.kwaterkwaliteit; water quality; nutrienten; nutrients; algen; algae; numerieke modellen; numerical modelling)uuid:6814d2bffc1b45f685239334910aae2eDhttp://resolver.tudelft.nl/uuid:6814d2bffc1b45f685239334910aae2eNZoutindringing achter schutsluizen: Toepassing TWOLAY voor prototype situatiesMoser, G.M.glocks; numerical modelling; numerieke modellen; salt water intrusion; schutsluizen; zoutwaterindringing)uuid:28dfac74d94046ae8982aff81a07640aDhttp://resolver.tudelft.nl/uuid:28dfac74d94046ae8982aff81a07640amMathematischfysische en numeriekwiskundige problemen in TOWB: Een inventarisatie en voorstel van onderzoekVerboom, G.K.; Os, A.G. vansedimenttransportprocessen; sediment transport processes; stromingsmodellen; flow models; numerieke modellen; numerical modelling)uuid:b1393b3c630b45d28f4ce5f1b3a6aa6dDhttp://resolver.tudelft.nl/uuid:b1393b3c630b45d28f4ce5f1b3a6aa6ddComputation of density currents in estuaries: Calibration and verification in a branched tidal flumeKarelse, M.; Perrels, P.A.J.numerieke modellen; numerical modelling; dichtheidsstroming; density induced flow; estuaria; estuaries; modelonderzoek; modelling)uuid:7faea55b2a8042ae90fc8176be4b7073Dhttp://resolver.tudelft.nl/uuid:7faea55b2a8042ae90fc8176be4b7073/Reststroomonderzoek in OosterscheldegetijmodelKarelse, M.afvalwaterverspreiding; numerical modelling; numerieke modellen; Oosterschelde; residual currents; reststromen; waste water dispersion; Zeeland)uuid:8286c92d3d0c44adbb1f3d037981d2deDhttp://resolver.tudelft.nl/uuid:8286c92d3d0c44adbb1f3d037981d2deGKalamiteuze lozingen in het stroomgebied van de Rijn: Verslag onderzoekLuteijn, J.J.; Pagee, J.A. van.rivierbeheer; river management; rivierverontreiniging; river pollution; lozingen; spills; numerieke modellen; numerical modelling; Rijn; Rhein; Nederland)uuid:175f97b87bae4c8d94d9829e9fe73ec6Dhttp://resolver.tudelft.nl/uuid:175f97b87bae4c8d94d9829e9fe73ec6oTWOLAY impliciet: Een eendimensionaal tweelagenmodel : modelbeschrijving en resultaten nauwkeurigheidsonderzoekModer, G.M.accuracy; hydraulic research; hydraulisch onderzoek; locks; nauwkeurigheid; numerical modelling; numerieke modellen; salt water intrusion; schutsluizen; zoutwaterindringing)uuid:bee04ef09ff3454f8e15937a8819b3c9Dhttp://resolver.tudelft.nl/uuid:bee04ef09ff3454f8e15937a8819b3c9lZoutindringing achter schutsluizen: Fysisch testen van het impliciete model TWOLAY (getijgootomstandigheden)locks; model calibration; modelijking; numerical modelling; numerieke modellen; salt water intrusion; schutsluizen; zoutwaterindringing)uuid:b6771eef5e2c49e69074ae87ef87250cDhttp://resolver.tudelft.nl/uuid:b6771eef5e2c49e69074ae87ef87250coWaterkwaliteitsmodel Hollandsch Diep / Haringvliet: Voorspelling toekomstige waterkwaliteit bij het meetpunt H9Stans, J.C._numerical modelling; numerieke modellen; waterkwaliteitsmodellen; water quality models; Zeeland)uuid:5e8c78b0ab9f45468acdacaf6253ccf8Dhttp://resolver.tudelft.nl/uuid:5e8c78b0ab9f45468acdacaf6253ccf8gVerificatie van numeriek 2D (vertikaal)model DISTRO aan getijgootmetingen: Verslag wiskundig onderzoekcalibration; dispersie; dispersion; gelaagdheid; ijking; numerical modelling; numerieke modellen; stratification; turbulence models; turbulentiemodellen)uuid:20a4803dd0f048b190cfa1fe12f04900Dhttp://resolver.tudelft.nl/uuid:20a4803dd0f048b190cfa1fe12f04900IWiskundige waterbewegingsmodellen in het advieswerk voor havens en kustenVreugdenhil, C.B.; Wind, H.G.Gkuststr< omen; littoral currents; numerieke modellen; numerical modelling)uuid:601842cc99a24aa4bc26710548c71c7bDhttp://resolver.tudelft.nl/uuid:601842cc99a24aa4bc26710548c71c7bmGetijgootonderzoek: Invloed dwarsmiddeling op grootte van dispersietransporten in 2D (vertikaal)beschrijvingdiffusiecoefficient; diffusivity; dispersie; dispersion; exchange flow; mass transport; numerical modelling; numerieke modellen; salt water intrusion; stoftransport; uitwisseling; zoutwaterindringing)uuid:32386108bda14b55b2dbf42f3031756dDhttp://resolver.tudelft.nl/uuid:32386108bda14b55b2dbf42f3031756d:Kooldioxide en water: Reakties en transport verschijnselenRooij, N.M. de)uuid:97a0581b00304a3688b83ea43dd6523fDhttp://resolver.tudelft.nl/uuid:97a0581b00304a3688b83ea43dd6523fdStorm surge barrier Oosterschelde  computation of siltation in dredged trenches: Mathematical modelaanzanding; channels; geulen; numerical modelling; numerieke modellen; Oosterschelde; sedimentatie; sedimentation; sedimentation of sand; sedimenttransportmodellen; sediment transport models)uuid:861b8003d3ea48a7ba654dbfa37538ceDhttp://resolver.tudelft.nl/uuid:861b8003d3ea48a7ba654dbfa37538ce_Kustmorfologie: Inventarisatie van numerieke modellen voor de berekening van kustontwikkelingenBoer, S.; Tilmans, W.M.K.kustmorfologie; coastal morphology; kustlijnontwikkeling; coastline development; numerieke modellen; numerical modelling; kusttransport; littoral transport)uuid:aa4e15d7c3974305a84a4ebe155251d1Dhttp://resolver.tudelft.nl/uuid:aa4e15d7c3974305a84a4ebe155251d1UZoutindringing achter schutsluizen: Wiskundig modelonderzoek (impliciet model TWOLAY)
Roelfzema, A.)uuid:ecd35cd9648b41f6b136b45624f82edcDhttp://resolver.tudelft.nl/uuid:ecd35cd9648b41f6b136b45624f82edcGetijgootonderzoek: Onderzoek met bodemruwheid ter verifikatie van tweedimensionaal numeriek zoutindringingsmodel  deel B : zoutzoet proevenbed roughness; bodemruwheid; current velocity measurement; dispersie; dispersion; getijmodellen; numerical modelling; numerieke modellen; salt water intrusion; stroomsnelheidsmeting; tidal models; zoutwaterindringing)uuid:d5d9c6b8d8da4726abdcf43bb627b741Dhttp://resolver.tudelft.nl/uuid:d5d9c6b8d8da4726abdcf43bb627b741Getijgootonderzoek: Onderzoek met bodemruwheid ter verifikatie van tweedimensionaal numeriek zoutindringingsmodel  deel A : homogene proeven)uuid:bd24b7d6cbef4c19857182043ef662f5Dhttp://resolver.tudelft.nl/uuid:bd24b7d6cbef4c19857182043ef662f5dZoutindringing achter schutsluizen: Getijgootonderzoek en wiskundig modelonderzoek (expliciet model)gelaagdheid; locks; modelling; modelonderzoek; numerical modelling; numerieke modellen; salt water intrusion; schutsluizen; stratification; zoutwaterindringing)uuid:1aa59eb355964633bbd2cbdc35feb6c6Dhttp://resolver.tudelft.nl/uuid:1aa59eb355964633bbd2cbdc35feb6c6Ontwikkeling van een statistisch model en toepassing ervan op enkele waterkwaliteitsparameters uit het Hollands Diep en Haringvliet Groot, S.rHaringvliet; Hollandsch Diep; numerical modelling; numerieke modellen; waterkwaliteit; water quality; ZuidHolland)uuid:eecf8b456ac04078b5072e21dfc10ecbDhttp://resolver.tudelft.nl/uuid:eecf8b456ac04078b5072e21dfc10ecb)Getijgootonderzoek: ProjektenbeschrijvingDronkers, J.density induced flow; dichtheidsstroming; getijden; getijrivieren; numerical modelling; numerieke modellen; salinity; tidal rivers; tides; zoutgehalte)uuid:cf1eda64b6174c5899b6e1f924f3a4afDhttp://resolver.tudelft.nl/uuid:cf1eda64b6174c5899b6e1f924f3a4afVStormvloedkering Oosterschelde: Belasting op putten ten gevolge van grondwaterstroming Vis, F.C.bouwputten; construction pits; grondwaterstroming; groundwater flow; hydrodynamic load; hydrodynamische belasting; numerical modelling; numerieke modellen)uuid:daa2996d32d44cfe8ce504b4ec9c5697Dhttp://resolver.tudelft.nl/uuid:daa2996d32d44cfe8ce504b4ec9c5697kGetijgootonderzoek: Eendimensionale numerieke berekening van getijbeweging en zoutverdeling in de getijgoot>dispersie; dispersion; numerical modelling; numer<ieke modellen)uuid:f10b8fdfc73d416d8a8529fa6c2aa022Dhttp://resolver.tudelft.nl/uuid:f10b8fdfc73d416d8a8529fa6c2aa022FComputations of a freshwater disposal into the Eastern Scheldt estuaryPerrels, P.A.J.estuaria; estuaries; numerical modelling; numerieke modellen; Oosterschelde; saltfreshwater mixing zone; turbulente menging; turbulent mixing; zoutzoetovergang)uuid:9bcf53f25b2c4bdc9d4fb97ccb304595Dhttp://resolver.tudelft.nl/uuid:9bcf53f25b2c4bdc9d4fb97ccb304595<Zuurstofmodel Zoommeer tijdens ontzilting: Verslag onderzoekPagee, J.A. vanWanaerobie; anaeroby; numerical modelling; numerieke modellen; oxygen; Zeeland; zuurstof)uuid:fe1865505b7643918b48bfcf81526921Dhttp://resolver.tudelft.nl/uuid:fe1865505b7643918b48bfcf81526921Zoutzoet problematiek Oosterschelde: Onderzoek naar de tijdschaal van verandering van de zoutverdeling bij sluiting van de stormvloedkeringclosure gaps; density induced flow; dichtheidsstroming; menging; mixing; numerical modelling; numerieke modellen; Oosterschelde; Philipsdam; salinity; sluitgaten; zoutgehalte)uuid:9d1562116f204016a9174516cf9dcb80Dhttp://resolver.tudelft.nl/uuid:9d1562116f204016a9174516cf9dcb80Evaluatie van de nota's 7308 en 7409 van de projektgroep Hollands DiepHaringvliet en enkele algemene beschouwingen over het toepassen van massabalansen)uuid:57f3b4fbef09455fb4517987335758b8Dhttp://resolver.tudelft.nl/uuid:57f3b4fbef09455fb4517987335758b8!Programma voor getijgootonderzoekdensity induced flow; dichtheidsstroming; gelaagdheid; menging; mixing; numerical modelling; numerieke modellen; stratification)uuid:7d49a0312353466d9a23bd094312259eDhttp://resolver.tudelft.nl/uuid:7d49a0312353466d9a23bd094312259eVEen planktonproduktie model toegepast op het Brielse Meer: Verslag wiskundig onderzoekdecological models; ecologische modellen; numerical modelling; numerieke modellen; plankton; plankton
*+&ffffff?'ffffff?(?)?"dXX333333?333333?U}}}}}}}}}} }
}}}
}}}}}}}}}}}}
@
!
"
#
$
%
&@
'
(
)
*
+
,

.@
/
0
)
1
2
3
4
5
6@
7
8
9
:
;
<
=
6@
7
8
>
?
@
A
B@
C
D
E
F
G
H
B@
I
J
K
L
M
N
B@
O
P
Q
R
S
T
B @
U
J
V
W
X
Y
B
@
Z
J
[
\
]
^
_@
`
a
b
c
d
e
f
g@
h
i
)
j
k
l
m
n
o
@
p
q
)
r
k
s
t
u
v@
w
x
y
z
{
@
}
~
x@
b
x@
l@
b
l@
d@
b
`@
\@
\@
\@
\@
b
X@
X@
X@
X@
X@
X@
b
T@
!
!
!
!
!!T@
!
!
!
! b
!
"
"
"
""T@
"
"
"
"
#
#
#
##T@
#
#
#
#
$
$
$
$$T@
$
$
$
$
%
%
%
%%T@
%
%
%
%
&
&
&
&&P@
&
&
&
&
'
'
'
''P@
'
'
'
'
(
(
(
((P@
(
(
(
(
)
)
)
))L@
)
)
)
)
*
*
*
**L@
*
*
*
*
!
+"
+#
+$
+%
+&+H@
+'
+(
+
+ b
+
)
+*
,+
,,
,
,.,H@
,/
,
,
,
0
1
2
3H@
4



.5
.6
.7
.8
.9.H@
.:
.;
.
. b
.
/<
/=
/>
/?/D@
/@
/
/
/
0A
0B
0C
0D0D@
0E
0
0
0
1F
1G
1H
1I1D@
1J
1
1
1
!
2K
2L
2M
2N2@@
2O
2
2
2
3P
3Q
3R
3S3@@
3@
3
3
3
4T
4U
4V
4W4@@
4X
4
4
4
5Y
5Z
5[
5\5@@
5]
5
5
5
6^
6_
6`
6a6<@
6b
6
6
6
7c
7d
7e
7f7<@
7g
7
7
7
8h
8i
8j
8k8<@
8l
8
8
8
9m
9n
9o
9p98@
9q
9
9
9
:r
:s
:t
:u:4@
:v
:
:
:
;w
;x
;y
;z;4@
;{
;
;
;
<
<}
<~
<<0@
<
<
<
<
=
=
=
==0@
=
=
=
=
>
>
>
>>0@
>
>
>
>
?
?
?
??0@
?
?
?
?
@
@
@
@@0@
@
@
@
@
A
A
A
AA,@
A
A
A
A
B
B
B
BB,@
B
B
B
B
C
C
C
CC,@
C
C
C
C
D
D
D
D
DD,@
D
D
D b
D
E
E
EE(@
E
E
E
E
F
F
F
FF(@
F
F
F
F
G
G
G
GG(@
G
G
G
G
H
H
H
HH(@
H
H
H
H
I
I
I
II(@
I
I
I
I )
I
I
I
J
J
J
J
JJ$@
J
J
J
J
J
K
K
K
KK$@
K
K
K
K
L
L
L
LL$@
L
L
L
L
M
M
M
MM$@
M
M
M
M
N
N
N
NN @
N
N
N
N
O
O
O
OO @
O
O
O
O
P
P
P
PP @
P
P
P
P
Q
Q
Q
QQ@
Q
Q
Q
Q
R
R
R
RR@
R
R
R
R
S
S
S
SS@
S
S
S
S
T
T
T
TT@
T
T
T
T
U
U
U
UU@
U
U
U
U
V
V
V
VV@
V
V
V
V
W
W
W
WW@
W
W
W
W
X
X
X
XX@
X
X
X
X
Y
Y
Y
YY@
Y
Y
Y
Y
Z
Z
Z
Zp
ZZ@
Z
Z
Z
Z
[
[
[[@
[
[
[
[
\
\
\
\
\\@
\
\
\
\
]
]!
]"
]#
]]@
]$
]
]
]
^%
^&
^'
^(
^^@
^)
^
^
^
_*
_+
_,
__@
_.
_
_
_
`/
`0
`1
`2
``@
`3
`
`
`
a4
a5
a6
a7a@
a8
a
a
a
b9
b:
b;
b<
bb@
b=
b
b
b
c>
c?
c@
cA
cc@
cB
c
c
c
dC
dD
dE
dF
dd@
dG
d
d
d
eH
eI
eJ
eKe@
eL
e
e
e
fM
fN
fO
fP
fQf@
fR
fS
f
f
f
T
gU
gV
gW
gp
gg@
gX
g
g
g
hY
hZ
h[
h\h@
hL
h
h
h
i]
i^
i_
i2
ii@
i`
i
i
i
ja
jb
jc
j2
jj@
jd
j
j
j
ke
kf
kg
khk@
ki
k
k
k
lj
lk
ll
lml@
l.
l
l
l
mn
mo
mp
mqm@
mr
m
m
m
ns
nt
nu
nv
nn@
nw
n
n
n
ox
oy
oz
o{o@
o
o
o
o
p}
p~
p
p
pp@
p
p
p
p
q
q
q
qq@
q
q
q
q
r
r
r
rr@
r
r
r
r
s
s
s
s
ss@
s
s
s
s
t
t
t
tt@
t
t
t
t
u
u
u
u
uu@
u
u
u
u
v
v
v
v
vv@
v
v
v
v
w
w
w
w
ww@
w
w
w
w
x
x
x
x
xx@
x
x
x
x
y
y
y
yy@
y
y
y
y
z
z
z
z
zz@
z
z
z
z
{
{
{
{
{{@
{
{
{
{



@




}
}
}
}}@
}
}
}
}
~
~
~
~
~~@
~
~
~
~
@
@
@
@
@
@
@
@
@
@
@
@
#
؞@
!"#$%&'()*+,./0123456789:;<=>?@ABCDEFGHIJKLMNOPQRSTUVWXYZ[\]^_`abcdefghijklmnopqrstuvwxyz{}~
!"#$%&'()*+,./0123456789:;<=>?@ABCDEFGHIJKLMNOPQRSTUVWXYZ[\]^_`abcdefghijklmnopqrstuvwxyz{}~
!"#$%&'()*+,./0123456789:;<=>?@ABCDEFGHIJKLMNOPQRSTUVWXYZ[\]^_`abcdefghijklmnopqrstuvwxyz{}~
!"#$%&'()*+,./0123456789:;<=>?@ABCDEFGHIJKLMNOPQRSTUVWXYZ[\]^_`abcdefghijklmnopqrstuvwxyz{}~
!"#$%&'()*+,./0123456789:;<=>?@ABCDEFGHIJKLMNOPQRSTUVWXYZ[\]^_`abcdefghijklmnopqrstuvwxyz{}~
!"#$%&'()*+,./0123456789:;<=>?@ABCDEFGHIJKLMNOPQRSTUVWXYZ[\]^_`abcdefghijklmnopqrstuvwxyz{}~
!"#$%&'()*+,./0123456789:;<=>?@ABCDEFGHIJKLMNOPQRSTUVWXYZ[\]^_`abcdefghijklmnopqrstuvwxyz{}~>@ddyKyKhttp://resolver.tudelft.nl/uuid:4b42fa39cb8b417cbf937964a662f27byKyKhttp://resolver.tudelft.nl/uuid:a92701716bc340e88a2780092380da9fyKyKhttp://resolver.tudelft.nl/uuid:68b47b2350d94b389e8b40b791958492yKyKhttp://resolver.tudelft.nl/uuid:81bc9d74c2b648a7a63dab6d8538587ayKyKhttp://resolver.tudelft.nl/uuid:38f0e80ed41043fbb7efc501485502a8yKyKhttp://resolver.tudelft.nl/uuid:51ee1355eca146b18ec71164689e4593yKyKhttp://resolver.tudelft.nl/uuid:e964293af6e94ae1ba51a550e9ad3cc0yKyKhttp://resolver.tudelft.nl/uuid:424c4f194bd248cd9221b6e3e8426636 yKyKhttp://resolver.tudelft.nl/uuid:b10bd89022ff419e996e181da3712ae0
yKyKhttp://resolver.tudelft.nl/uuid:926378207a3749baa6ab00450c3e2642yKyKhttp://resolver.tudelft.nl/uuid:b038f8a2d2db46fc84193141f21faa1cyKyKhttp://resolver.tudelft.nl/uuid:0611ddb7324a479bbc1228dec5901f02
yKyKhttp://resolver.tudelft.nl/uuid:4000389f6da749aeb4880bd821adcc6fyKyKhttp://resolver.tudelft.nl/uuid:783456a877ba4dd691ff6a1862cc71e7yKyKhttp://resolver.tudelft.nl/uuid:8a5eb35f8d44426791934275bdab429dyKyKhttp://resolver.tudelft.nl/uuid:5cc8dbd45c39486ab3815bd2f19dc91eyKyKhttp://resolver.tudelft.nl/uuid:97f11a2256ad4504a42acfedcb3677cayKyKhttp://resolver.tudelft.nl/uuid:23af0b631add4004a9c5e0cbb920c11fyKyKhttp://resolver.tudelft.nl/uuid:78726a2ee5424aeabf7f8611481e1091yKyKhttp://resolver.tudelft.nl/uuid:067eafc2d813479ca8212e6f3c3c9dcfyKyKhttp://resolver.tudelft.nl/uuid:ee1cdcb8214d43649c042e40e6e87ba9yKyKhttp://resolver.tudelft.nl/uuid:c5be94eb1d984e7cb73f68e2d7754e98yKyKhttp://resolver.tudelft.nl/uuid:ae6c1a29c9c04bfdb492e92f927cf4c3yKyKhttp://resolver.tudelft.nl/uuid:7754c382091544758c08a32fad37d5dayKyKhttp://resolver.tudelft.nl/uuid:d8b275cd27974214922d6febafa9a87byKyKhttp://resolver.tudelft.nl/uuid:53768609192a4fc496fb9b5d038e09b2yKyKhttp://resolver.tudelft.nl/uuid:cb24265828f7464ab97dcc9bc9c2fe9dyKyKhttp://resolver.tudelft.nl/uuid:451eb5abc92a4b68aa7cdd077c202c68yKyKhttp://resolver.tudelft.nl/uuid:3d58dbf894f8473ab6787aa40dc5fb1dyKyKhttp://resolver.tudelft.nl/uuid:634dae4b41014124ae46b47c04ed3d96yKyKhttp://resolver.tudelft.nl/uuid:c2511bacc2224cb29dc3bed247c73d1b yKyKhttp://resolver.tudelft.nl/uuid:d5142d5f5dcb4a7ab8aad81f474f03b6!!yKyKhttp://resolver.tudelft.nl/uuid:2c91c8bdb0a44c3b86eef5ad8f1ea24e""yKyKhttp://resolver.tudelft.nl/uuid:29af05030d0e4fb6a116ee28b618a7d9##yKyKhttp://resolver.tudelft.nl/uuid:956ca27f2a11434f8cfc5fdd44c864aa$$yKyKhttp://resolver.tudelft.nl/uuid:dad3797d14ff4cc6999595233a6bc1a5%%yKyKhttp://resolver.tudelft.nl/uuid:65aec9d1a69842f49ce528194af3ebf1&&yKyKhttp://resolver.tudelft.nl/uuid:263e3065b3e44747bf867aff6b8e8005''yKyKhttp://resolver.tudelft.nl/uuid:8a2aaa9c5e884508a2c04bc429e32bf1((yKyKhttp://resolver.tudelft.nl/uuid:4fda20a41010440684f8537d3c1c110a))yKyKhttp://resolver.tudelft.nl/uuid:974306ce9940426b9d6ab956551958f8**yKyKhttp://resolver.tudelft.nl/uuid:304fa85dbc4146d3948c0e91bd91a6ab++yKyKhttp://resolver.tudelft.nl/uuid:b940c337a6ba4fddac64a6a9ee8d4125,,yKyKhttp://resolver.tudelft.nl/uuid:adb5ef04f69b49a38d41f17678ad7241yKyKhttp://resolver.tudelft.nl/uuid:a33ed8339e2340988e98f30341d23f0f..yKyKhttp://resolver.tudelft.nl/uuid:5247bd4a29a04434b169b26ec36bd68a//yKyKhttp://resolver.tudelft.nl/uuid:0f15435046b9452a9b1175103b60f57400yKyKhttp://resolver.tudelft.nl/uuid:26e9cbb14b8b4138ae6e200ed63645d211yKyKhttp://resolver.tudelft.nl/uuid:75d667f674914c2c8829c3a2be58110222yKyKhttp://resolver.tudelft.nl/uuid:011694ee394b44f59866981513bdd78033yKyKhttp://resolver.tudelft.nl/uuid:b9d225e628044fecac85c510c7bd888044yKyKhttp://resolver.tudelft.nl/uuid:d55c64d31f454711bc26fe7c7f3f6cc555yKyKhttp://resolver.tudelft.nl/uuid:6c49bcf27a79437d99351c4e7513aff666yKyKhttp://resolver.tudelft.nl/uuid:4ded3e1fed2f4e2fad65b04a5e856f2e77yKyKhttp://resolver.tudelft.nl/uuid:1b04609e0408485cba2ad415f13c418c88yKyKhttp://resolver.tudelft.nl/uuid:2960591ee9754655baa9d9cb77ee867399yKyKhttp://resolver.tudelft.nl/uuid:2ca9709b2c804fb5ba188e2bc21ababc::yKyKhttp://resolver.tudelft.nl/uuid:ed11cc74a1fd4745a31c00b5ab2af0bf;;yKyKhttp://resolver.tudelft.nl/uuid:aee8578ec2bb481395eab6ede55a44ab<<yKyKhttp://resolver.tudelft.nl/uuid:832ff86e640f41eca3cd0cd6247c7ed4==yKyKhttp://resolver.tudelft.nl/uuid:6a73f423aa9e44688a1e3b7045d03920>>yKyKhttp://resolver.tudelft.nl/uuid:91e600ce2f9e486f82817e8715991ed5??yKyKhttp://resolver.tudelft.nl/uuid:c5120cfad3324878bb7aaedae62d5603@@yKyKhttp://resolver.tudelft.nl/uuid:954b1a19b62e42d08719f60826b74ed3AAyKyKhttp://resolver.tudelft.nl/uuid:9854e9be43264f5aa7801787b89e89d5BByKyKhttp://resolver.tudelft.nl/uuid:834924ba1835482dad7c6b0ed13c76f4CCyKyKhttp://resolver.tudelft.nl/uuid:daa641621ddc4a07a035a5cac9c0d423DDyKyKhttp://resolver.tudelft.nl/uuid:dea5cec74098404ab273fcf12aada406EEyKyKhttp://resolver.tudelft.nl/uuid:7e93ce77475a4462ae6a7af9ce07ba8eFFyKyKhttp://resolver.tudelft.nl/uuid:b36f7b47f0b6448394c7fe1148ae2781GGyKyKhttp://resolver.tudelft.nl/uuid:efc8b45950d44f15ad937e2ea363e4dcHHyKyKhttp://resolver.tudelft.nl/uuid:25e682698a1245ee945ce20df79a1e0bIIyKyKhttp://resolver.tudelft.nl/uuid:cab5abad774347cda58418068bb9abb9JJyKyKhttp://resolver.tudelft.nl/uuid:79377d9ab68f47c5a792456a60555a20KKyKyKhttp://resolver.tudelft.nl/uuid:316f70938cba41dc852f47e51c343c91LLyKyKhttp://resolver.tudelft.nl/uuid:d63f03f79a9f4492993413427d01aa7aMMyKyKhttp://resolver.tudelft.nl/uuid:22a106301d754bf2b03b78cb7ea11cffNNyKyKhttp://resolver.tudelft.nl/uuid:f3d4362f01e04666b309f84bb18178bcOOyKyKhttp://resolver.tudelft.nl/uuid:bcb4728663714645b9ac0a25cdcb448fPPyKyKhttp://resolver.tudelft.nl/uuid:f13f88b35aa34cbfa625c1f29689121bQQyKyKhttp://resolver.tudelft.nl/uuid:00e23f2eff934fa3b0ed16f01b5f78bcRRyKyKhttp://resolver.tudelft.nl/uuid:fcca68a0ba744e70b8967f3b23d3748cSSyKyKhttp://resolver.tudelft.nl/uuid:fcb2800ebe28428a82e0ca60358c96f6TTyKyKhttp://resolver.tudelft.nl/uuid:bea91ea52cd048f6bc563e9ef4c4d5a3UUyKyKhttp://resolver.tudelft.nl/uuid:c31f6d9ebf264550b062163e720223d0VVyKyKhttp://resolver.tudelft.nl/uuid:28fc6192ed2a4f19b2343ab9eb3ed97dWWyKyKhttp://resolver.tudelft.nl/uuid:98eded3d95df4a0ba2a4be4029a08a73XXyKyKhttp://resolver.tudelft.nl/uuid:345548c4b0774c57a605c66b648f4712YYyKyKhttp://resolver.tudelft.nl/uuid:90d4f48f20c84c598eb8924042ab434eZZyKyKhttp://resolver.tudelft.nl/uuid:ee1211e73b12430c99e9b0bf2db295a8[[yKyKhttp://resolver.tudelft.nl/uuid:daf2003479904ad99f443a8e9f85880a\\yKyKhttp://resolver.tudelft.nl/uuid:88ab52046191493e99dcb24d25a4ff17]]yKyKhttp://resolver.tudelft.nl/uuid:8c5f7e95ffd148feaa5a67add49c6000^^yKyKhttp://resolver.tudelft.nl/uuid:d5269b0bd42a4127a48cd68dd7bfd6b7__yKyKhttp://resolver.tudelft.nl/uuid:81f29778a3b5457899de7217b452907e``yKyKhttp://resolver.tudelft.nl/uuid:ab9477fc19e64d29a6ea4f4a983af299aayKyKhttp://resolver.tudelft.nl/uuid:23ded1d3d9e74e09b7fd7a5ab3edfdeebbyKyKhttp://resolver.tudelft.nl/uuid:480c65c85c94401ab1db75a77734af3fccyKyKhttp://resolver.tudelft.nl/uuid:69082fd5664646c2835b739930235aa2ddyKyKhttp://resolver.tudelft.nl/uuid:81dea395d3f949188eb8d9fd8e13a2e4eeyKyKhttp://resolver.tudelft.nl/uuid:ecd9504eff4146eeaa966ac240b54b8affyKyKhttp://resolver.tudelft.nl/uuid:87b1d5e2736749efa65a39ef29d160c7ggyKyKhttp://resolver.tudelft.nl/uuid:640b88d731784a239be764646a0b2ce8hhyKyKhttp://resolver.tudelft.nl/uuid:33aea2a62f854c938b274407540a2681iiyKyKhttp://resolver.tudelft.nl/uuid:618ddf5b19eb4f33b697defc8bfc6601jjyKyKhttp://resolver.tudelft.nl/uuid:283d08f1da6d4b0f97c10c6bfe202f2bkkyKyKhttp://resolver.tudelft.nl/uuid:32baa71395e24fdfa6edd4be429d0721llyKyKhttp://resolver.tudelft.nl/uuid:2097590e82864949aebb36919a2080ccmmyKyKhttp://resolver.tudelft.nl/uuid:6163189a652f48c09d131a476be2ecefnnyKyKhttp://resolver.tudelft.nl/uuid:5ca5f0699ee34a10bd77d1069c5d0b30ooyKyKhttp://resolver.tudelft.nl/uuid:52467c5c786b4b1cb68437d69996136cppyKyKhttp://resolver.tudelft.nl/uuid:6814d2bffc1b45f685239334910aae2eqqyKyKhttp://resolver.tudelft.nl/uuid:28dfac74d94046ae8982aff81a07640arryKyKhttp://resolver.tudelft.nl/uuid:b1393b3c630b45d28f4ce5f1b3a6aa6dssyKyKhttp://resolver.tudelft.nl/uuid:7faea55b2a8042ae90fc8176be4b7073ttyKyKhttp://resolver.tudelft.nl/uuid:8286c92d3d0c44adbb1f3d037981d2deuuyKyKhttp://resolver.tudelft.nl/uuid:175f97b87bae4c8d94d9829e9fe73ec6vvyKyKhttp://resolver.tudelft.nl/uuid:bee04ef09ff3454f8e15937a8819b3c9wwyKyKhttp://resolver.tudelft.nl/uuid:b6771eef5e2c49e69074ae87ef87250cxxyKyKhttp://resolver.tudelft.nl/uuid:5e8c78b0ab9f45468acdacaf6253ccf8yyyKyKhttp://resolver.tudelft.nl/uuid:20a4803dd0f048b190cfa1fe12f04900zzyKyKhttp://resolver.tudelft.nl/uuid:601842cc99a24aa4bc26710548c71c7b{{yKyKhttp://resolver.tudelft.nl/uuid:32386108bda14b55b2dbf42f3031756dyKyKhttp://resolver.tudelft.nl/uuid:97a0581b00304a3688b83ea43dd6523f}}yKyKhttp://resolver.tudelft.nl/uuid:861b8003d3ea48a7ba654dbfa37538ce~~yKyKhttp://resolver.tudelft.nl/uuid:aa4e15d7c3974305a84a4ebe155251d1yKyKhttp://resolver.tudelft.nl/uuid:ecd35cd9648b41f6b136b45624f82edcyKyKhttp://resolver.tudelft.nl/uuid:d5d9c6b8d8da4726abdcf43bb627b741yKyKhttp://resolver.tudelft.nl/uuid:bd24b7d6cbef4c19857182043ef662f5yKyKhttp://resolver.tudelft.nl/uuid:1aa59eb355964633bbd2cbdc35feb6c6yKyKhttp://resolver.tudelft.nl/uuid:eecf8b456ac04078b5072e21dfc10ecbyKyKhttp://resolver.tudelft.nl/uuid:cf1eda64b6174c5899b6e1f924f3a4afyKyKhttp://resolver.tudelft.nl/uuid:daa2996d32d44cfe8ce504b4ec9c5697yKyKhttp://resolver.tudelft.nl/uuid:f10b8fdfc73d416d8a8529fa6c2aa022yKyKhttp://resolver.tudelft.nl/uuid:9bcf53f25b2c4bdc9d4fb97ccb304595yKyKhttp://resolver.tudelft.nl/uuid:fe1865505b7643918b48bfcf81526921yKyKhttp://resolver.tudelft.nl/uuid:9d1562116f204016a9174516cf9dcb80yKyKhttp://resolver.tudelft.nl/uuid:57f3b4fbef09455fb4517987335758b8yKyKhttp://resolver.tudelft.nl/uuid:7d49a0312353466d9a23bd094312259egg
Root Entry Fmm=mm=@SummaryInformation( F<Workbook FwDocumentSummaryInformation8 F
!"#$%&'()*+,./0123456789:;<=>?@ABCDEFGHIJKLMNOPQRSTUVWXYZ[\]^_`abcdefghijklmnopqrstuvwxyz{}~
!"#$%&'()*+,./0123456789:;<=>?@ABCDEFGHIJKLMNOPQRSTUVWXYZ[\]^_`abcdefghijklmnopqrstuvwxyz{}~
!"#$%&'()*+,./0123456789:;<=>