"uuid","repository link","title","author","contributor","publication year","abstract","subject topic","language","publication type","publisher","isbn","issn","patent","patent status","bibliographic note","access restriction","embargo date","faculty","department","research group","programme","project","coordinates"
"uuid:337306c1-4ad9-49a0-90de-bed90539994a","http://resolver.tudelft.nl/uuid:337306c1-4ad9-49a0-90de-bed90539994a","Three-dimensional Marchenko equation for Green's function retrieval “beyond seismic interferometry”","Wapenaar, C.P.A.; Slob, E.C.; Van der Neut, J.; Thorbecke, J.W.; Broggini, F.; Snieder, R.","","2013","In recent work we showed with heuristic arguments that the Green's response to a virtual source in the subsurface can be obtained from reflection data at the surface. This method is called “Green's function retrieval beyond seismic interferometry”, because, unlike in seismic interferometry, no receiver is needed at the position of the virtual source. Here we present a formal derivation of Green's function retrieval beyond seismic interferometry, based on a 3-D extension of the Marchenko equation. We illustrate the theory with a numerical example and indicate the potential applications in seismic imaging and AVA analysis.","multiples; reciprocity; wave equation; reverse-time","en","journal article","Society of Exploration Geophysicists","","","","","","","","Civil Engineering and Geosciences","Geoscience & Engineering","","","",""
"uuid:1f984a23-467a-499c-90a1-68e98b728ad8","http://resolver.tudelft.nl/uuid:1f984a23-467a-499c-90a1-68e98b728ad8","Data-driven wavefield focusing and imaging with multidimensional deconvolution: Numerical examples for reflection data with internal multiples","Broggini, F.; Snieder, R.; Wapenaar, C.P.A.","","2014","Standard imaging techniques rely on the single scattering assumption. This requires that the recorded data do not include internal multiples, i.e., waves that have bounced multiple times between reflectors before reaching the receivers at the acquisition surface. When multiple reflections are present in the data, standard imaging algorithms incorrectly image them as ghost reflectors. These artifacts can mislead interpreters in locating potential hydrocarbon reservoirs. Recently, we introduced a new approach for retrieving the Green’s function recorded at the acquisition surface due to a virtual source located at depth. We refer to this approach as data-driven wavefield focusing. Additionally, after applying source-receiver reciprocity, this approach allowed us to decompose the Green’s function at a virtual receiver at depth in its downgoing and upgoing components. These wavefields were then used to create a ghost-free image of the medium with either crosscorrelation or multidimensional deconvolution, presenting an advantage over standard prestack migration. We tested the robustness of our approach when an erroneous background velocity model is used to estimate the first-arriving waves, which are a required input for the data-driven wavefield focusing process. We tested the new method with a numerical example based on a modification of the Amoco model.","multiples; migration; reciprocity; crosscorrelation","en","journal article","Society of Exploration Geophysicists","","","","","","","","Civil Engineering and Geosciences","Geoscience & Engineering","","","",""
"uuid:61ad5e42-e10d-470c-a500-382090e1bff5","http://resolver.tudelft.nl/uuid:61ad5e42-e10d-470c-a500-382090e1bff5","Marchenko imaging","Wapenaar, C.P.A.; Thorbecke, J.W.; Van der Neut, J.R.; Broggini, F.; Slob, E.C.; Snieder, R.","","2014","Traditionally, the Marchenko equation forms a basis for 1D inverse scattering problems. A 3D extension of the Marchenko equation enables the retrieval of the Green’s response to a virtual source in the subsurface from reflection measurements at the earth’s surface. This constitutes an important step beyond seismic interferometry. Whereas seismic interferometry requires a receiver at the position of the virtual source, for the Marchenko scheme it suffices to have sources and receivers at the surface only. The underlying assumptions are that the medium is lossless and that an estimate of the direct arrivals of the Green’s function is available. The Green’s function retrieved with the 3D Marchenko scheme contains accurate internal multiples of the inhomogeneous subsurface. Using source-receiver reciprocity, the retrieved Green’s function can be interpreted as the response to sources at the surface, observed by a virtual receiver in the subsurface. By decomposing the 3D Marchenko equation, the response at the virtual receiver can be decomposed into a downgoing field and an upgoing field. By deconvolving the retrieved upgoing field with the downgoing field, a reflection response is obtained, with virtual sources and virtual receivers in the subsurface. This redatumed reflection response is free of spurious events related to internal multiples in the overburden. The redatumed reflection response forms the basis for obtaining an image of a target zone. An important feature is that spurious reflections in the target zone are suppressed, without the need to resolve first the reflection properties of the overburden.","multiples; migration; reciprocity","en","journal article","Society of Exploration Geophysicists","","","","","","","","Civil Engineering and Geosciences","Geoscience & Engineering","","","",""
"uuid:ef15255e-c92c-4615-bd63-b9525f7e25db","http://resolver.tudelft.nl/uuid:ef15255e-c92c-4615-bd63-b9525f7e25db","Marchenko imaging: Imaging with primaries, internal multiples, and free-surface multiples","Singh, S.; Snieder, R.; Behura, J.; van der Neut, J.R.; Wapenaar, C.P.A.; Slob, E.C.","","2015","Recent work on retrieving the Green’s function with the Marchenko equation shows how these functions for a virtual source in the subsurface can be obtained from reflection data. The response to the virtual source is the Green’s function from the location of the virtual source to the surface. The Green’s function is retrieved using only the reflection response of the medium and an estimate of the first arrival at the surface from the virtual source. Current techniques, however, only include primaries and internal multiples. Therefore, all surface-related multiples must be removed from the reflection response prior to Green’s function retrieval. We have extended the Marchenko equation to retrieve the Green’s function that includes primaries, internal multiples, and free-surface multiples. In other words, we have retrieved the Green’s function in the presence of a free surface. The information needed for the retrieval is the same as the current techniques, with the only difference being that the reflection response now also includes free-surface multiples. The inclusion of these multiples makes it possible to include them in the imaging operator, and it obviates the need for surface-related multiple elimination. This type of imaging with Green’s functions is called Marchenko imaging.","multiples; scattering; imaging; reflectivity; reciprocity","en","journal article","Society of Exploration Geophysicists","","","","","","","","Civil Engineering and Geosciences","Geoscience & Engineering","","","",""