Searched for: +
(1 - 20 of 34)

Pages

document
Kozak, B.U. (author), Van Rossum, H.M. (author), Luttik, M.A.H. (author), Akeroyd, M. (author), Benjamin, K.R. (author), Wu, L. (author), De Vries, S. (author), Daran, J.M. (author), Pronk, J.T. (author), Van Maris, A.J.A. (author)
The energetic (ATP) cost of biochemical pathways critically determines the maximum yield of metabolites of vital or commercial relevance. Cytosolic acetyl coenzyme A (acetyl-CoA) is a key precursor for biosynthesis in eukaryotes and for many industrially relevant product pathways that have been introduced into Saccharomyces cerevisiae, such as...
journal article 2014
document
Zelle, R.M. (author), De Hulster, E. (author), Kloezen, W. (author), Pronk, J.T. (author), Van Maris, A.J.A. (author)
A recent effort to improve malic acid production by Saccharomyces cerevisiae by means of metabolic engineering resulted in a strain that produced up to 59 g liter?1 of malate at a yield of 0.42 mol (mol glucose)?1 in calcium carbonate-buffered shake flask cultures. With shake flasks, process parameters that are important for scaling up this...
journal article 2009
document
Boender, L.G.M. (author), De Hulster, E.A.F. (author), Van Maris, A.J.A. (author), Daran-Lapujade, P.A.S. (author), Pronk, J.T. (author)
Growth at near-zero specific growth rates is a largely unexplored area of yeast physiology. To investigate the physiology of Saccharomyces cerevisiae under these conditions, the effluent removal pipe of anaerobic, glucose-limited chemostat culture (dilution rate, 0.025 h–1) was fitted with a 0.22-µm-pore-size polypropylene filter unit. This...
journal article 2009
document
Huisjes, E.H. (author), De Hulster, E. (author), Van Dam, J.C. (author), Pronk, J.T. (author), Van Maris, A.J.A. (author)
The efficient fermentation of mixed substrates is essential for the microbial conversion of second-generation feedstocks, including pectin-rich waste streams such as citrus peel and sugar beet pulp. Galacturonic acid is a major constituent of hydrolysates of these pectin-rich materials. The yeast Saccharomyces cerevisiae, the main producer of...
journal article 2012
document
Abbott, D.A. (author), Zelle, R.M. (author), Pronk, J.T. (author), Van Maris, A.J.A. (author)
To meet the demands of future generations for chemicals and energy and to reduce the environmental footprint of the chemical industry, alternatives for petrochemistry are required. Microbial conversion of renewable feedstocks has a huge potential for cleaner, sustainable industrial production of fuels and chemicals. Microbial production of...
journal article 2009
document
Medina, V.G. (author), Almering, M.J.H. (author), Van Maris, A.J.A. (author), Pronk, J.T. (author)
In anaerobic cultures of wild-type Saccharomyces cerevisiae, glycerol production is essential to reoxidize NADH produced in biosynthetic processes. Consequently, glycerol is a major by-product during anaerobic production of ethanol by S. cerevisiae, the single largest fermentation process in industrial biotechnology. The present study...
journal article 2009
document
Kozak, B.U. (author), Van Rossum, H.M. (author), Benjamin, K.R. (author), Wu, L. (author), Daran, J.G. (author), Pronk, J.T. (author), Van Maris, A.J.A. (author)
Cytosolic acetyl-coenzyme A is a precursor for many biotechnologically relevant compounds produced by Saccharomyces cerevisiae. In this yeast, cytosolic acetyl-CoA synthesis and growth strictly depend on expression of either the Acs1 or Acs2 isoenzyme of acetyl-CoA synthetase (ACS). Since hydrolysis of ATP to AMP and pyrophosphate in the ACS...
journal article 2013
document
De Kok, S. (author), Marques, W.L. (author), Mans, R. (author), Yilmaz, D. (author), Suir, E. (author), Pronk, J.T. (author), Gombert, A.K. (author), Daran, J.M. (author), Van Maris, A.J.A. (author)
journal article 2014
document
Boender, L.G.M. (author), Van Maris, A.J.A. (author), De Hulster, E.A.F. (author), Almering, M.J.H. (author), Van der Klei, I.J. (author), Veenhuis, M. (author), De Winde, J.H. (author), Pronk, J.T. (author), Daran-Lapujade, P.A.S. (author)
Extremely low specific growth rates (below 0.01 h?1) represent a largely unexplored area of microbial physiology. In this study, anaerobic, glucose-limited retentostats were used to analyse physiological and genome-wide transcriptional responses of Saccharomyces cerevisiae to cultivation at near-zero specific growth rates. While quiescence is...
journal article 2011
document
Zelle, R.M. (author), De Hulster, E. (author), Kloezen, W. (author), Pronk, J.T. (author), Van Maris, A.J.A. (author)
A recent effort to improve malic acid production by Saccharomyces cerevisiae by means of metabolic engineering resulted in a strain that produced up to 59 g liter(-1) of malate at a yield of 0.42 mol (mol glucose)(-1) in calcium carbonate-buffered shake flask cultures. With shake flasks, process parameters that are important for scaling up this...
journal article 2010
document
Wisselink, H.W. (author), Toirkens, M.J. (author), Wu, Q. (author), Pronk, J.T. (author), Van Maris, A.J.A. (author)
Lignocellulosic feedstocks are thought to have great economic and environmental significance for future biotechnological production processes. For cost-effective and efficient industrial processes, complete and fast conversion of all sugars derived from these feedstocks is required. Hence, simultaneous or fast sequential fermentation of sugars...
journal article 2008
document
Hazelwood, L.A. (author), Daran, J.M. (author), Van Maris, A.J.A. (author), Pronk, J.T. (author), Dickinson, J.R. (author)
journal article 2008
document
Wisselink, H.W. (author), Toirkens, M.J. (author), Del Rosario Franco Berriel, M. (author), Winkler, A.A. (author), Van Dijken, J.P. (author), Pronk, J.T. (author), Van Maris, A.J.A. (author)
For cost-effective and efficient ethanol production from lignocellulosic fractions of plant biomass, the conversion of not only major constituents, such as glucose and xylose, but also less predominant sugars, such as L-arabinose, is required. Wild-type strains of Saccharomyces cerevisiae, the organism used in industrial ethanol production,...
journal article 2007
document
Milne, N. (author), Luttik, M.A.H. (author), Cueto Rojas, H.F. (author), Wahl, A. (author), Van Maris, A.J.A. (author), Pronk, J.T. (author), Daran, J.G. (author)
In microbial processes for production of proteins, biomass and nitrogen-containing commodity chemicals, ATP requirements for nitrogen assimilation affect product yields on the energy producing substrate. In Saccharomyces cerevisiae, a current host for heterologous protein production and potential platform for production of nitrogen-containing...
journal article 2015
document
Gonzalez-Ramos, D. (author), Van den Broek, M. (author), Van Maris, A.J.A. (author), Pronk, J.T. (author), Daran, J.M.G. (author)
Background n-Butanol and isobutanol produced from biomass-derived sugars are promising renewable transport fuels and solvents. Saccharomyces cerevisiae has been engineered for butanol production, but its high butanol sensitivity poses an upper limit to product titers that can be reached by further pathway engineering. A better understanding of...
journal article 2013
document
Guadalupe-Medina, V. (author), Wisselink, H.W. (author), Luttik, M.A.H. (author), De Hulster, E. (author), Daran, J.M. (author), Pronk, J.T. (author), Van Maris, A.J.A. (author)
Background Redox-cofactor balancing constrains product yields in anaerobic fermentation processes. This challenge is exemplified by the formation of glycerol as major by-product in yeast-based bioethanol production, which is a direct consequence of the need to reoxidize excess NADH and causes a loss of conversion efficiency. Enabling the use of...
journal article 2013
document
Abbott, D.A. (author), Suir, E. (author), Duong, G.H. (author), De Hulster, E. (author), Pronk, J.T. (author), Van Maris, A.J.A. (author)
Industrial production of lactic acid with the current pyruvate decarboxylase-negative Saccharomyces cerevisiae strains requires aeration to allow for respiratory generation of ATP to facilitate growth and, even under nongrowing conditions, cellular maintenance. In the current study, we observed an inhibition of aerobic growth in the presence of...
journal article 2009
document
Zelle, R.M. (author), Trueheart, J. (author), Harrison, J.C. (author), Pronk, J.T. (author), Van Maris, A.J.A. (author)
Pyruvate carboxylase is the sole anaplerotic enzyme in glucose-grown cultures of wild-type Saccharomyces cerevisiae. Pyruvate carboxylase-negative (Pyc–) S. cerevisiae strains cannot grow on glucose unless media are supplemented with C4 compounds, such as aspartic acid. In several succinate-producing prokaryotes, phosphoenolpyruvate...
journal article 2010
document
Oud, B. (author), Flores, C.L. (author), Gancedo, C. (author), Zhang, X. (author), Trueheart, J. (author), Daran, J.M. (author), Pronk, J.T. (author), Van Maris, A.J.A. (author)
Background Pyruvate-decarboxylase negative (Pdc-) strains of Saccharomyces cerevisiae combine the robustness and high glycolytic capacity of this yeast with the absence of alcoholic fermentation. This makes Pdc-S. cerevisiae an interesting platform for efficient conversion of glucose towards pyruvate-derived products without formation of ethanol...
journal article 2012
document
Guadalupe-Medina, V. (author), Metz, B. (author), Oud, B. (author), Van der Graaf, C.M. (author), Pronk, J.T. (author), Van Maris, A.J.A. (author)
Glycerol production by Saccharomyces cerevisiae, which is required for redox-cofactor balancing in anaerobic cultures, causes yield reduction in industrial bioethanol production. Recently, glycerol formation in anaerobic S.?cerevisiae cultures was eliminated by expressing Escherichia coli (acetylating) acetaldehyde dehydrogenase (encoded by mhpF...
journal article 2013
Searched for: +
(1 - 20 of 34)

Pages