Searched for: +
(1 - 4 of 4)
document
Slob, E.C. (author), Wapenaar, C.P.A. (author), Treitel, Sven (author)
We derive a fast acoustic inversion method for a piecewise homogeneous horizontally layered medium. The method obtains medium parameters from the reflection response. The method can be implemented to obtain the parameters on either side of a reflector at an arbitrary depth. Three processing steps lead to the inversion result. First, we solve a...
conference paper 2018
document
Zhang, L. (author), Thorbecke, J.W. (author), Wapenaar, C.P.A. (author), Slob, E.C. (author)
We have developed a scheme that retrieves primary reflections in the two-way traveltime domain by filtering the data. The data have their own filter that removes internal multiple reflections, whereas the amplitudes of the retrieved primary reflections are compensated for two-way transmission losses. Application of the filter does not require...
journal article 2019
document
Zhang, L. (author), Thorbecke, J.W. (author), Wapenaar, C.P.A. (author), Slob, E.C. (author)
We have compared three data-driven internal multiple reflection elimination schemes derived from the Marchenko equations and inverse scattering series (ISS). The two schemes derived from Marchenko equations are similar but use different truncation operators. The first scheme creates a new data set without internal multiple reflections. The...
journal article 2019
document
Slob, E.C. (author), Wapenaar, C.P.A. (author), Treitel, Sven (author)
Acoustic inversion in one-dimension gives impedance as a function of travel time.<br/>Inverting the reflection response is a linear problem. Recursive methods, from top to bottom or vice versa, are known and use a fundamental wave field that is computed from the reflection response. An integral over the solution to the Marchenko equation, on the...
journal article 2020
Searched for: +
(1 - 4 of 4)