Searched for: +
(1 - 14 of 14)
document
Rossi, E. (author)
Self-healing concrete has attracted increasing attention of researchers and industry over the last decades. Given the brittle nature and the relatively low tensile strength of concrete, the occurrence of cracks is an almost unavoidable phenomenon affecting (reinforced) concrete structures. Cracks allow harmful agents present in the environment...
doctoral thesis 2022
document
Rossi, E. (author), Vermeer, C.M. (author), Mors, R.M. (author), Kleerebezem, R. (author), Copuroglu, Oguzhan (author), Jonkers, H.M. (author)
Bacteria-based self-healing concrete has the ability to heal cracks due to the bacterial conversion of incorporated organic compounds into calcium carbonate. Precipitates seal the cracks, theoretically increasing the service life of constructions. The aim of this paper is to propose a precursor for bacteria-based self-healing concrete derived...
journal article 2021
document
Šavija, B. (author), Feiteira, J. (author), Araújo, M. (author), Chatrabhuti, S. (author), Raquez, JM (author), van Tittelboom, K (author), Gruyaert, Elke (author), de Belie, N (author), Schlangen, E. (author)
Polymeric capsules can have an advantage over glass capsules used up to now as proof-of-concept carriers in self-healing concrete. They allow easier processing and afford the possibility to fine tune their mechanical properties. Out of the multiple requirements for capsules used in this context, the capability of rupturing when crossed by a...
journal article 2017
document
Mors, R.M. (author), Jonkers, H.M. (author)
conference paper 2015
document
Sierra Beltran, M.G. (author), Jonkers, H.M. (author), Mors, R.M. (author), Mera-Ortiz, W. (author)
This paper describes the first field application of self-healing concrete with alkaliphilic spore-forming bacteria and reinforced with natural fibres. The application took place in the highlands in Ecuador in July 2014. The concrete was cast as linings for an irrigation canal that transports water from glaciers in the Andean mountains to...
conference paper 2015
document
Savija, B. (author), Schlangen, E. (author)
Concrete structures are commonly cracked when in service. To overcome issues arising from cracking, self-healing concrete is being developed. Together with the development of the material, techniques to verify and quantify self-healing are being developed. A number of destructive techniques have been used in the past. It would be beneficial to...
conference paper 2015
document
Mors, R.M. (author), Jonkers, H.M. (author)
A functional experimental concrete system has been developed in our lab, in which a two component bacteria-based healing agent contained in a protective reservoir is included in the concrete mixture. Incorporated bacteria have the potential to produce copious amounts of calcium carbonate based crystals from supplied mineral precursor compounds....
conference paper 2013
document
Zemskov, S.V. (author), Copuroglu, O. (author), Vermolen, F.J. (author)
A mathematical model for the post-damage recovery of carbonated cement is described. The model is based on a two-dimensional initial-boundary value problem for a system of partial differential equations. The study is embedded within the framework of investigating the effect of using lightweight expanded clay aggregate, which is incorporated into...
conference paper 2013
document
Sangadji, S. (author), Wiktor, V.A.C. (author), Jonkers, H.M. (author), Schlangen, H.E.J.G. (author)
Bacteria induced calcite precipitation has been proven to be effective in making concrete structure self-healing. In Microlab TU Delft, the concept has been enhanced by developing a liquid bacteria-based concrete repair system. The solution contains calcite precipitating bacteria, nutrients and buffer compound which may demonstrate high...
conference paper 2013
document
Wiktor, V.A.C. (author), Sangadji, S. (author), Jonkers, H.M. (author), Schlangen, H.E.J.G. (author)
Bacterially induced calcium carbonate precipitation has received considerable attention for its potential application in enforcing or repairing construction material. The mechanism of bacterially mediated calcite precipitation in those studies is primarily based on the enzymatic hydrolysis of urea. Besides calcite precipitation, this reaction...
conference paper 2013
document
Palin, D. (author), Wiktor, V. (author), Jonkers, H.M. (author)
Marine concrete structures are exposed to one of the most hostile of natural environments. Many physical and chemical phenomena are usually interdependent and mutually reinforcing in the deterioration of marine exposed concrete: expansion and microcracking due to physical effects increases concrete permeability paving the way for harmful...
conference paper 2013
document
Varini, M. (author), Koleva, D.A. (author), Denkova, A.G. (author), Mol, J.M.C. (author), Terryn, H. (author), Van Breugel, K. (author)
Polymeric nano-materials utilization in reinforced concrete, aiming to deal with steel corrosion was developed in previous works. Promising results were obtained with PEO–b–PS nano-formations, both in terms of enhanced bulk matrix properties and improved steel corrosion resistance. Recent research has been focusing on a cheaper and commercially...
conference paper 2013
document
Wiktor, V. (author), Jonkers, H.M. (author)
La formation d’un réseau continu de fissures contribue à l’augmentation de la perméabilité du béton, réduisant ainsi de manière importante sa résistance à l’attaque d’agents agressifs dissous dans l’eau. Afin d’augmenter la capacité de cicatrisation autogène du béton, certains agents cicatrisants spécifiques peuvent être incorporés dans la...
journal article 2011
document
Wiktor, V.A.C. (author), Jonkers, H.M. (author)
conference paper 2011
Searched for: +
(1 - 14 of 14)