Searched for: +
(1 - 4 of 4)
document
He, S. (author), Zhang, Shizhe (author), Lukovic, M. (author), Schlangen, E. (author)
Strain hardening cementitious composite (SHCC) is a special class of ultra-ductile material which has autogenous self-healing capability due to its intrinsic tight crack widths. To further improve its healing ability, healing agent (HA) can be incorporated in SHCC, enabling it also the autonomous self-healing mechanism. In this study, the...
journal article 2022
document
Xu, Y. (author), Zhang, H. (author), Schlangen, E. (author), Lukovic, M. (author), Šavija, B. (author)
Auxetic behavior refers to material with negative Poisson's ratio. In this research, a new type of cementitious auxetic material is developed. A novel crack bridging auxetic mechanism is discovered which is in contrast with a local buckling mechanism commonly employed to trigger auxetic behavior. Taking advantage of 3D printing techniques,...
journal article 2020
document
Zhang, H. (author), Šavija, B. (author), Lukovic, M. (author), Schlangen, E. (author)
This work proposes a method for numerically investigating the fracture mechanism of cement paste at the microscale based on X-ray computed tomography and nanoindentation. For this purpose, greyscale level based digital microstructure was generated by X-ray microcomputed tomography with a resolution of 2 μm/voxel length. In addition,...
journal article 2019
document
Zhang, H. (author), Šavija, B. (author), Chaves Figueiredo, S. (author), Lukovic, M. (author), Schlangen, E. (author)
This work aims to provide a method for numerically and experimentally investigating the fracture mechanism of cement paste at the microscale. For this purpose, a new procedure was proposed to prepare micro cement paste cubes (100 × 100 × 100 µm3) and beams with a square cross section of 400 × 400 µm2. By loading the cubes to failure with a...
journal article 2016
Searched for: +
(1 - 4 of 4)