Searched for: +
(1 - 5 of 5)
document
Broggini, F. (author), Wapenaar, C.P.A. (author), Van der Neut, J.R. (author), Snieder, R. (author)
An iterative method is presented that allows one to retrieve the Green's function originating from a virtual source located inside a medium using reflection data measured only at the acquisition surface. In addition to the reflection response, an estimate of the travel times corresponding to the direct arrivals is required. However, no detailed...
journal article 2014
document
Singh, S. (author), Snieder, R. (author), Behura, J. (author), van der Neut, J.R. (author), Wapenaar, C.P.A. (author), Slob, E.C. (author)
Recent work on autofocusing with the Marchenko equation has shown how the Green's function for a virtual source in the subsurface can be obtained from reflection data. The response to the virtual source is the Green's function from the location of the virtual source to the surface. The Green's function is retrieved using only the reflection...
conference paper 2014
document
Singh, S. (author), Snieder, R. (author), Behura, J. (author), van der Neut, J.R. (author), Wapenaar, C.P.A. (author), Slob, E.C. (author)
Recent work on retrieving the Green’s function with the Marchenko equation shows how these functions for a virtual source in the subsurface can be obtained from reflection data. The response to the virtual source is the Green’s function from the location of the virtual source to the surface. The Green’s function is retrieved using only the...
journal article 2015
document
Singh, S. (author), Wapenaar, C.P.A. (author), van der Neut, J.R. (author), Snieder, R (author)
By solving the Marchenko equations, the Green’s function can be retrieved between a virtual receiver in the subsurface to points at the surface (no physical receiver is required at the virtual location). We extend the idea of these equations to retrieve the Green’s function between any two points in the subsurface; i.e, between a virtual source...
conference paper 2016
document
Reinicke Urruticoechea, C. (author), Dukalski, M.S. (author), Wapenaar, C.P.A. (author)
The reflection response of strongly scattering media often contains complicated interferences between primaries and (internal) multiples, which can lead to imaging artifacts unless handled correctly. Internal multiples can be kinematically predicted, for example by the Jakubowicz method or by the inverse scattering series (ISS), as long as...
journal article 2020
Searched for: +
(1 - 5 of 5)