Searched for:
(1 - 4 of 4)
document
Wang, X. (author), Xing, F. (author), Zhang, M. (author), Han, N. (author), Qian, Z. (author)
A new type of self-healing cementitious composites by using organic microcapsules is designed in Guangdong Key Laboratory of Durability for Coastal Civil Engineering, Shenzhen University. For the organic microcapsules, the shell material is urea formoldehyde (UF), and the core healing agent is Epoxy. The effect of organic microcapsules on...
conference paper 2013
document
Zhang, M. (author), Han, N. (author), Xing, F. (author), Wang, X. (author), Schlangen, H.E.J.G. (author)
For a microcapsule based self-healing system in the cementitious material, a fundamental issue is to find and facilitate a suitable microcapsule system, concerning either the material selection or design and manufacture process. In this study, urea formaldehyde resin is used for the shell of microcapsule, and bisphenol – an epoxy resin E-51...
conference paper 2013
document
Zhang, M. (author), Han, N. (author), Xing, F. (author), Wang, X. (author), Schlangen, H.E.J.G. (author)
An international cooperation research project has been financially supported by China Nature Science Foundation, which consists of three relatively independent, but strategically integrated research sub-programs, aiming at the formation of a selfhealing system based on the microcapsule principle for the cementitious composites. In this paper, a...
conference paper 2013
document
Rong, M.Z. (author), Zhang, M.Q. (author), Yuan, C.E. (author), Wang, F. (author)
Generally, intrinsic self-healing polymers based on reversible covalent bonds scission and reconnection would lose their load bearing capability as a result of molecular cleavage during healing process. This shortcoming also results in creep deformation of the products. To solve the problem, we introduce a novel healing mechanism by using...
conference paper 2013
Searched for:
(1 - 4 of 4)