Searched for: +
(1 - 3 of 3)
document
Hoekstra, N. (author), Pellegrini, M. (author), Bloemendal, Martin (author), Spaak, G. (author), Andreu Gallego, A. (author), Rodriguez Comins, J. (author), Grotenhuis, T. (author), Picone, S. (author), Murrell, A. J. (author)
Heating and cooling using aquifer thermal energy storage (ATES) has hardly been applied outside the Netherlands, even though it could make a valuable contribution to the energy transition. The Climate-KIC project “Europe-wide Use of Energy from aquifers” – E-USE(aq) – aimed to pave the way for Europe-wide application of ATES, through the...
journal article 2020
document
Picone, S. (author), Bloemendal, Martin (author), Pellegrini, M. (author), Hoekstra, N. (author), Andreu Gallego, A. (author), Rodriguez Comins, J. (author), Murrel, A. (author)
Aquifer Thermal Energy Storage (ATES) system make use of the groundwater to exchange energy with the building: in winter, groundwater is pumped from the warm well to the buildings heat exchanger and the building extracts heat from the groundwater as energy source for the heat pumps, while the groundwater will be injected in the cold well at...
conference paper 2019
document
Pellegrini, M. (author), Bloemendal, Martin (author), Hoekstra, N. (author), Spaak, G. (author), Andreu Gallego, A. (author), Rodriguez Comins, J. (author), Grotenhuis, T. (author), Picone, S. (author), Murrell, A. J. (author)
A transition to a low carbon energy system is needed to respond to global challenge of climate change mitigation. Aquifer Thermal Energy Storage (ATES) is a technology with worldwide potential to provide sustainable space heating and cooling by (seasonal) storage and recovery of heat in the subsurface. However, adoption of ATES varies strongly...
journal article 2019