Searched for: +
(1 - 7 of 7)
document
Wapenaar, C.P.A. (author), Dukalski, Marcin (author), Reinicke, Christian (author), Snieder, Roel (author)
Many seismic imaging methods use wavefield extrapolation operators to redatum sources and receivers from the surface into the subsurface. We discuss wavefield extrapolation operators that account for internal multiple reflections, in particular propagator matrices, transfer matrices and Marchenko focusing functions. A propagator matrix is a...
journal article 2023
document
Shoja, Aydin (author), van der Neut, J.R. (author), Wapenaar, C.P.A. (author)
Geophysicists have widely used least-squares reverse-time migration (LSRTM) to obtain high-resolution images of the subsurface. However, LSRTM is computationally expensive and it can suffer from multiple reflections. Recently, a target-oriented approach to LSRTM has been proposed, which focuses the wavefield above the target of interest....
journal article 2022
document
Wapenaar, C.P.A. (author), Snieder, Roel (author), de Ridder, Sjoerd (author), Slob, E.C. (author)
Marchenko methods are based on integral representations which express Green’s functions for virtual sources and/or receivers in the subsurface in terms of the reflection response at the surface. An underlying assumption is that inside the medium the wave field can be decomposed into downgoing and upgoing waves and that evanescent waves can be...
journal article 2021
document
van IJsseldijk, J.E. (author), Wapenaar, C.P.A. (author)
The Marchenko method retrieves the responses to virtual sources in the Earth's subsurface from reflection data at the surface, accounting for all orders of multiple reflections. The method is based on two integral representations for focusing- A nd Green's functions. In discretized form, these integrals are represented by finite summations...
journal article 2021
document
Wapenaar, C.P.A. (author)
With the Marchenko method, Green’s functions in the subsurface can be retrieved from seismic reflection data at the surface. State-of-the-art Marchenko methods work well for propagating waves but break down for evanescent waves. This paper discusses a first step towards extending the Marchenko method for evanescent waves and analyses its...
journal article 2020
document
Meles, G.A. (author), Wapenaar, C.P.A. (author), Thorbecke, J.W. (author)
Marchenko redatuming is a novel scheme used to retrieve up- and downgoing Green's functions in an unknown medium.Marchenko equations are based on reciprocity theorems and are derived on the assumption of the existence of functions exhibiting space-time focusing properties once injected in the subsurface. In contrast to interferometry but...
journal article 2018
document
Wapenaar, C.P.A. (author), Thorbecke, J.W. (author), van der Neut, J.R. (author)
Green's theorem plays a fundamental role in a diverse range of wavefield imaging applications, such as holographic imaging, inverse scattering, time-reversal acoustics and interferometric Green's function retrieval. In many of those applications, the homogeneous Green's function (i.e. the Green's function of the wave equation without a...
journal article 2016
Searched for: +
(1 - 7 of 7)