Searched for: +
(1 - 12 of 12)
document
Novikov, A. (author), Voskov, D.V. (author), Hajibeygi, H. (author), Jansen, J.D. (author)
An increasing number of geo-energy applications require the quantitative prediction of hydromechanical response in subsurface. Integration of mass, momentum, and energy conservation laws becomes essential for performance and risk analysis of enhanced geothermal systems, stability assessment of CO2 sequestration and hydrogen storage, resolving...
conference paper 2022
document
Shokrollahzadeh Behbahani, S. (author), Hajibeygi, H. (author), Voskov, D.V. (author), Jansen, J.D. (author)
A smoothed embedded finite-volume modeling (sEFVM) method is presented for faulted and fractured heterogeneous poroelastic media. The method casts a fully coupled strategy to treat the coupling between fault slip mechanics, deformation mechanics, and fluid flow equations. This ensures the stability and consistency of the simulation results,...
journal article 2022
document
Novikov, A. (author), Voskov, D.V. (author), Khait, M. (author), Hajibeygi, H. (author), Jansen, J.D. (author)
We present a scalable collocated Finite Volume Method (FVM) to simulate induced seismicity as a result of pore pressure changes. A discrete system is obtained based on a fully-implicit fully-coupled description of flow, elastic deformation, and contact mechanics at fault surfaces on a flexible unstructured mesh. The cell-centered collocated...
journal article 2022
document
Novikov, A. (author), Voskov, D.V. (author), Khait, M. (author), Hajibeygi, H. (author), Jansen, J.D. (author)
We develop a collocated Finite Volume Method (FVM) to study induced seismicity as a result of pore pressure fluctuations. A discrete system is obtained based on a fully-implicit coupled description of flow, elastic deformation, and contact mechanics at fault surfaces on a fully unstructured mesh. The cell-centered collocated scheme leads to...
conference paper 2021
document
Jesus de Moraes, R. (author), Hajibeygi, H. (author), Jansen, J.D. (author)
In data assimilation problems, various types of data are naturally linked to different spatial resolutions (e.g., seismic and electromagnetic data), and these scales are usually not coincident to the subsurface simulation model scale. Alternatives like upscaling/downscaling of the data and/or the simulation model can be used, but with...
journal article 2020
document
Jesus de Moraes, R. (author), de Zeeuw, W. (author), R. P. Rodrigues, José (author), Hajibeygi, H. (author), Jansen, J.D. (author)
We introduce a semi-analytical iterative multiscale derivative computation methodology that allows for error control and reduction to any desired accuracy, up to fine-scale precision. The model responses are computed by the multiscale forward simulation of flow in heterogeneous porous media. The derivative computation method is based on the...
journal article 2019
document
Jesus de Moraes, R. (author), Rodrigues, José R.P. (author), Hajibeygi, H. (author), Jansen, J.D. (author)
A generic framework for the computation of derivative information required for gradient-based optimization using sequentially coupled subsurface simulation models is presented. The proposed approach allows for the computation of any derivative information with no modification of the mathematical framework. It only requires the forward model...
journal article 2018
document
Jesus de Moraes, R. (author), Hajibeygi, H. (author), Jansen, J.D. (author)
In data assimilation problems, various types of data are naturally linked to different spatial resolutions (e.g. seismic and electromagnetic data), and these scales are usually not coincident to the subsurface simulation model scale. Alternatives like down/upscaling of the data and/or the simulation model can be used, but with potential loss of...
conference paper 2018
document
Hajibeygi, H. (author), Jansen, J.D. (author), Leeuwenburgh, O. (author), Voskov, D.V. (author)
contribution to periodical 2017
document
Jesus de Moraes, R. (author), Rodrigues, José R P (author), Hajibeygi, H. (author), Jansen, J.D. (author)
An efficient multiscale (MS) gradient computation method for subsurface flow management and optimization is introduced. The general, algebraic framework allows for the calculation of gradients using both the Direct and Adjoint derivative methods. The framework also allows for the utilization of any MS formulation that can be algebraically...
journal article 2017
document
Jesus de Moraes, R. (author), Rodrigues, J. R.P. (author), Hajibeygi, H. (author), Jansen, J.D. (author)
A multiscale gradient computation method for multiphase flow in heterogeneous porous media is developed. The method constructs multiscale primal and dual coarse grids, imposed on the given fine-scale computational grid. Local multiscale basis functions are computed on (dual-) coarse blocks, constructing an accurate map (prolongation operator)...
conference paper 2017
document
Jesus de Moraes, R. (author), Rodrigues, J.R.P. (author), Hajibeygi, H. (author), Jansen, J.D. (author)
We present an efficient multiscale (MS) gradient computation that is suitable for reservoir management studies involving optimization techniques for, e.g., computer-assisted history matching or life-cycle production optimization. The general, algebraic framework allows for the calculation of gradients using both the Direct and Adjoint derivative...
conference paper 2016
Searched for: +
(1 - 12 of 12)