Searched for:
(1 - 5 of 5)
document
Palin, D. (author), Wiktor, V. (author), Jonkers, H.M. (author)
Marine concrete structures are exposed to one of the most hostile of natural environments. Many physical and chemical phenomena are usually interdependent and mutually reinforcing in the deterioration of marine exposed concrete: expansion and microcracking due to physical effects increases concrete permeability paving the way for harmful...
conference paper 2013
document
Wiktor, V. (author), Sangadji, S. (author), Jonkers, H.M. (author), Schlangen, H.E.J.G. (author)
Bacterially induced calcium carbonate precipitation has received considerable attention for its potential application in enforcing or repairing construction material. The mechanism of bacterially mediated calcite precipitation in those studies is primarily based on the enzymatic hydrolysis of urea. Besides calcite precipitation, this reaction...
conference paper 2013
document
Jonkers, H.M. (author), Palin, D. (author), Flink, P. (author), Thijssen, A. (author)
Concrete constructions in the marine environment suffer from chemical attack of sea salts which can induce damage to both the concrete matrix and embedded steel reinforcement. For example, ingress of sulfate and chloride ions can respectively result in detrimental ettringite formation and enhanced corrosion of the steel rebars. The first...
conference paper 2013
document
Mors, R.M. (author), Jonkers, H.M. (author)
A functional experimental concrete system has been developed in our lab, in which a two component bacteria-based healing agent contained in a protective reservoir is included in the concrete mixture. Incorporated bacteria have the potential to produce copious amounts of calcium carbonate based crystals from supplied mineral precursor compounds....
conference paper 2013
document
Sangadji, S. (author), Wiktor, V.A.C. (author), Jonkers, H.M. (author), Schlangen, H.E.J.G. (author)
Bacteria induced calcite precipitation has been proven to be effective in making concrete structure self-healing. In Microlab TU Delft, the concept has been enhanced by developing a liquid bacteria-based concrete repair system. The solution contains calcite precipitating bacteria, nutrients and buffer compound which may demonstrate high...
conference paper 2013
Searched for:
(1 - 5 of 5)