Searched for: +
(1 - 20 of 274)

Pages

document
Wapenaar, C.P.A. (author), Brackenhoff, J. (author), De Ridder, S. (author), Slob, E.C. (author), Snieder, R. (author)
Green’s functions and propagator matrices are both solutions of the wave equation, but whereas Green’s functions obey a causality condition in time (G = 0 for t < 0), propagator matrices obey a boundary condition in space. Marchenko-type focusing functions focus a wave field in space at zero time. We discuss the mutual relations between Green...
conference paper 2023
document
Reinicke, Christian (author), Dukalski, Marcin (author), Wapenaar, C.P.A. (author)
Minimum-phase properties are well-understood for scalar functions where they can be used as physical constraint for phase reconstruction. Existing scalar applications of the latter in geophysics include, for example the reconstruction of transmission from acoustic reflection data, or multiple elimination via the augmented acoustic Marchenko...
journal article 2023
document
van IJsseldijk, J.E. (author), van der Neut, J.R. (author), Thorbecke, J.W. (author), Wapenaar, C.P.A. (author)
Geophysical monitoring of subsurface reservoirs relies on detecting small changes in the seismic response between a baseline and monitor study. However, internal multiples, related to the over- and underburden, can obstruct the view of the target response, hence complicating the time-lapse analysis. To retrieve a response that is free from...
journal article 2023
document
Hartstra, I.E. (author), Wapenaar, C.P.A. (author)
Previous studies indicate that scattering may pose a trade-off for the performance of seismic interferometry (SI) applications for retrieving body-wave reflections of a target reflector. While it has been demonstrated that a higher scattering strength of the overburden improves the Green's function estimated by cross-correlation SI, other...
journal article 2023
document
Shoja, Aydin (author), van der Neut, J.R. (author), Wapenaar, C.P.A. (author)
Least-squares reverse-time migration (LSRTM) is a method that seismologists utilize to compute a high-resolution subsurface image. Nevertheless, LSRTM is a computationally demanding problem. One way to reduce the computational costs of the LSRTM is to choose a small region of interest (ROI) and compute the image of that region. However, finding...
journal article 2023
document
Wapenaar, C.P.A. (author)
For the elastodynamic wave equation discussed in Appendix A.4 in Ref. 1, the expressions for matrices ∼L 6 1 and ∼L 6 2 in Eqs. (A32) and (A33) must be multiplied by 61. In other words, the signs of ∼L _ <sub>1</sub>and ∼L _ <sub>2</sub>have to be changed, whereas the signs of ∼L 1 and ∼L 2 remain unchanged. With these corrections, matrix ∼L ...
journal article 2023
document
Diekmann, Leon (author), Vasconcelos, Ivan (author), Wapenaar, C.P.A. (author), Slob, E.C. (author), Snieder, Roel (author)
Marchenko-type integrals typically relate so-called focusing functions and Green's functions via the reflection response measured on the open surface of a volume of interest. Originating from one dimensional inverse scattering theory, the extension to two and three dimensions set in motion various new developments regarding imaging in complex...
journal article 2023
document
van IJsseldijk, J.E. (author), Hajibeygi, H. (author), Wapenaar, C.P.A. (author)
Reservoir simulations for subsurface processes play an important role in successful deployment of geoscience applications such as geothermal energy extraction and geo-storage of fluids. These simulations provide time-lapse dynamics of the coupled poromechanical processes within the reservoir and its over-, under-, and side-burden environments...
journal article 2023
document
Wapenaar, C.P.A. (author), Dukalski, Marcin (author), Reinicke, Christian (author), Snieder, Roel (author)
Many seismic imaging methods use wavefield extrapolation operators to redatum sources and receivers from the surface into the subsurface. We discuss wavefield extrapolation operators that account for internal multiple reflections, in particular propagator matrices, transfer matrices and Marchenko focusing functions. A propagator matrix is a...
journal article 2023
document
van IJsseldijk, J.E. (author), Brackenhoff, Joeri (author), Thorbecke, J.W. (author), Wapenaar, C.P.A. (author)
The data-driven Marchenko method is able to redatum wavefields to arbitrary locations in the subsurface, and can, therefore, be used to isolate zones of specific interest. This creates a new reflection response of the target zone without interference from over- or underburden reflectors. Consequently, the method is well suited to obtain a...
journal article 2023
document
Wapenaar, C.P.A. (author)
Classical acoustic wave-field representations consist of volume and boundary integrals, of which the integrands contain specific combinations of Green's functions, source distributions, and wave fields. Using a unified matrix-vector wave equation for different wave phenomena, these representations can be reformulated in terms of Green's matrices...
journal article 2022
document
van der Neut, J.R. (author), Brackenhoff, J.A. (author), Meles, G.A. (author), Zhang, L. (author), Slob, E.C. (author), Wapenaar, C.P.A. (author)
A Green's function in an acoustic medium can be retrieved from reflection data by solving a multidimensional Marchenko equation. This procedure requires a priori knowledge of the initial focusing function, which can be interpreted as the inverse of a transmitted wavefield as it would propagate through the medium, excluding (multiply)...
journal article 2022
document
Shoja, Aydin (author), van der Neut, J.R. (author), Wapenaar, C.P.A. (author)
Least-squares reverse time migration (LSRTM) is a common imaging technique that geophysicists have been using to obtain high-resolution images. Nevertheless, the high computational cost shifted the focus of researchers to the target-oriented approach. In this approach, by limiting the computational grid to a relatively smaller region, the...
conference paper 2022
document
van der Neut, J.R. (author), Brackenhoff, Joeri (author), Meles, Giovanni Angelo (author), Slob, E.C. (author), Wapenaar, C.P.A. (author)
By solving a Marchenko equation, Green’s functions at an arbitrary (inner) depth level inside an unknown elastic layered medium can be retrieved from single-sided reflection data, which are collected at the top of the medium. To date, it has only been possible to obtain an exact solution if the medium obeyed stringent monotonicity conditions and...
journal article 2022
document
Wapenaar, C.P.A. (author), de Ridder, Sjoerd (author), Dukalski, Marcin (author), Reinicke, Christian (author)
Standard Marchenko redatuming and imaging schemes neglect evanescent waves and are based on the assumption that decomposition into downgoing and upgoing waves is possible in the subsurface. Recently we have shown that propagator matrices, which circumvent these assumptions, can be expressed in terms of Marchenko focusing functions. In this paper...
conference paper 2022
document
Dukalski, Marcin (author), Reinicke, Christian (author), Wapenaar, C.P.A. (author)
Marchenko equation-based methods promise data-driven, true-amplitude internal multiple elimination. The method is exact in 1-D acoustic media, however it needs to be expanded to account for the presence of 2- and 3-D elastodynamic wave-field phenomena, such as compressional (P) to shear (S) mode conversions, total reflections or evanescent waves...
conference paper 2022
document
Meles, G.A. (author), Reinicke, Christian (author), Dukalski, M (author), Wapenaar, C.P.A. (author)
Marchenko redatuming retrieves Green’s functions inside an unknown medium, by solving a set of coupled Marchenko equations, which are derived from an under-determined system of equation and two temporal truncations. To constrain the problem, two assumptions are made, which hold reasonably well for acoustic, but not for elastodynamic waves. First...
conference paper 2022
document
van der Neut, J.R. (author), Brackenhoff, J. (author), Meles, Giovanni Angelo (author), Slob, E.C. (author), Wapenaar, C.P.A. (author)
Green’s functions in an unknown elastic layered medium can be retrieved from single-sided reflection data by solving a Marchenko equation. This methodology requires a priori knowledge of all forward-scattered (non-converted and converted) waveforms. Moreover, the medium should satisfy stringent monotonicity conditions, which are often not met in...
conference paper 2022
document
Dukalski, M (author), Reinicke, Christian (author), Wapenaar, C.P.A. (author)
The presence of evanescent modes and their impact on the Marchenko method has been until very recently a topic that received little attention. In this contribution we link the concept of the transfer matrix to the fields usually associated with the Marchenko method. Using that formalism, we introduce the concept of a path reversal - a...
conference paper 2022
document
Wapenaar, C.P.A. (author), Slob, E.C. (author)
Inspired by recent developments in wave propagation and scattering experiments with parity-time (PT) symmetric materials, we discuss reciprocity and representation theorems for 3D inhomogeneous PT-symmetric materials and indicate some applications. We start with a unified matrix-vector wave equation which accounts for acoustic, quantum...
journal article 2022
Searched for: +
(1 - 20 of 274)

Pages