Searched for: +
(1 - 3 of 3)
document
Beernink, S.T.W. (author), Bloemendal, Martin (author), Kleinlugtenbelt, Rob (author), Hartog, Niels (author)
Low temperature (<25 °C) Aquifer Thermal Energy Storage (ATES) systems have a world-wide potential to provide low-carbon space heating and cooling for buildings by using heat pumps combined with the seasonal subsurface storage and recovery of heated and cooled groundwater. ATES systems increasingly utilize aquifer space, decreasing the...
journal article 2022
document
Beernink, Stijn (author), Hartog, Niels (author), Bloemendal, Martin (author), van der Meer, Marlous (author)
Energy consumption for space heating and cooling of buildings can be decreased by 40-80% by use of Aquifer Thermal Energy Storage (ATES). ATES is a proven technique, however, it is not known how efficient currently operating systems are recovering stored energy from the subsurface and how this can be determined with available data. Recent...
conference paper 2019
document
Bloemendal, Martin (author), Hartog, Niels (author)
Aquifer thermal energy storage (ATES) is a technology with worldwide potential to provide sustainable space heating and cooling using groundwater stored at different temperatures. The thermal recovery efficiency is one of the main parameters that determines the overall energy savings of ATES systems and is affected by storage specifics and site...
journal article 2018