Searched for: +
(61 - 80 of 275)

Pages

document
Brackenhoff, J.A. (author), Thorbecke, J.W. (author), Wapenaar, C.P.A. (author)
abstract 2020
document
Meles, G.A. (author), Zhang, L. (author), Thorbecke, J.W. (author), Wapenaar, C.P.A. (author), Slob, E.C. (author)
Seismic images provided by reverse time migration can be contaminated by artefacts associated with the migration of multiples. Multiples can corrupt seismic images, producing both false positives, that is by focusing energy at unphysical interfaces, and false negatives, that is by destructively interfering with primaries. Multiple prediction...
journal article 2020
document
Wapenaar, C.P.A. (author), Staring, M. (author), Brackenhoff, J.A. (author), Zhang, L. (author), Thorbecke, J.W. (author), Slob, E.C. (author)
Since the introduction of the Marchenko method in geophysics, many variants have been developed. Using a compact unified notation, we review redatuming by multidimensional deconvolution and by double focusing, virtual seismology, double dereverberation and transmission-compensated Marchenko multiple elimination, and discuss the underlying...
conference paper 2020
document
Meles, G.A. (author), Zhang, L. (author), Thorbecke, J.W. (author), Wapenaar, C.P.A. (author), Slob, E.C. (author)
<br/>
abstract 2020
document
Meles, G.A. (author), Zhang, L. (author), Thorbecke, J.W. (author), Wapenaar, C.P.A. (author), Slob, E.C. (author)
Seismic images provided by reverse time migration can be contaminated by artefacts associated with the migration of multiples.<br/><br/>Multiples can corrupt seismic images, producing both false positives, i.e. by focusing energy at unphysical interfaces, and false negatives, i.e. by destructively interfering with primaries. Multiple-related...
conference paper 2020
document
Shirmohammadi, F. (author), Weemstra, C. (author), Draganov, D.S. (author), Wapenaar, C.P.A. (author)
poster 2019
document
van IJsseldijk, J.E. (author), Wapenaar, C.P.A. (author)
Seismic time-lapse studies are generally concerned with variations in a specific target zone, situated inside an otherwise static medium. In seismic monitoring the entire reflection response at the surface needs to be remodeled for every change in the target zone. Ideally, however, only the response of the target zone is remodeled, which is then...
poster 2019
document
Staring, M. (author), Wapenaar, C.P.A. (author)
We apply Marchenko redatuming using an adaptive double-focusing method to 3D field data of the Santos basin, Brazil. This method was already successfully applied to 2D field data and we now study the acquisition geometry and preprocessing requirements in 3D. We start from 3D synthetic data modeled on a dense grid of colocated sources and...
conference paper 2019
document
Wapenaar, C.P.A. (author), Reinicke Urruticoechea, C. (author)
Given the increasing interest for non-reciprocal materials, we propose a novel acoustic imaging method for layered non-reciprocal media. The method we propose is a modification of the Marchenko imaging method, which handles multiple scattering between the layer interfaces in a data-driven way. We start by reviewing the basic equations for wave...
journal article 2019
document
Reinicke Urruticoechea, C. (author), Dukalski, M.S. (author), Wapenaar, C.P.A. (author)
The elastodynamic Marchenko method removes overburden interactions obscuring the target information. This method either relies on separability of the so-called focusing and Green's functions or requires an accurate initial estimate of the focusing and Green's function overlap. Hitherto, F1- and G-+ have been assumed separable, whereas F1+ and...
conference paper 2019
document
Wapenaar, C.P.A. (author), van IJsseldijk, J.E. (author)
The Marchenko method is based on two integral representations for focusing functions and Green’s functions. In practice the integrals are replaced by finite summations. This works well for regularly sampled data, but the quality of the results degrades in case of imperfect sampling. We reformulate the integral representations into summation...
conference paper 2019
document
Meles, G.A. (author), van der Neut, J.R. (author), van Dongen, K.W.A. (author), Wapenaar, C.P.A. (author)
Wavefield focusing can be achieved by Time-Reversal Mirrors, which involve in- and output signals that are infinite in time and waves propagating through the entire medium. Here, an alternative solution for wavefield focusing is presented. This solution is based on a new integral representation where in- and output signals are finite in time,...
conference paper 2019
document
Sripanich, Yanadet (author), Vasconcelos, Ivan (author), Wapenaar, C.P.A. (author)
The Marchenko method retrieves Green's functions between the acquisition surface and any arbitrary point in the medium. The process generally involves solving an inversion starting with an initial focusing function, e.g., a direct-wave Green's function from the desired subsurface position, typically obtained using an approximate velocity...
journal article 2019
document
Minato, S. (author), Ghose, R. (author), Wapenaar, C.P.A. (author)
Characterizing the mechanical and hydraulic properties of fractures is crucial in hydrocarbon and geothermal field development. Contrary to passive microseismic measurements, active seismic measurements using a borehole, e.g., VSP or sonic logging, have a potential to address aseismic fractures. However, there is a considerable scale gap between...
conference paper 2019
document
Minato, S. (author), Ghose, R. (author), Wapenaar, C.P.A. (author)
Characterizing subsurface fractures is a key to developing hydrocarbon and geothermal fields, as well as providing fundamental information on fracture system relevant to regional seismotectonics. Seismic characterization of fractures has generally been based on the effective medium theory, which considers seismically invisible small fractures....
conference paper 2019
document
Minato, S. (author), Ghose, R. (author), Wapenaar, C.P.A. (author)
Single-well reflection imaging using sonic logging data successfully locates fine-scale structures around a borehole including fractures. In order to achieve accurate and quantitative estimation of fracture properties with high resolution, we propose to couple least-squares migration with linear slip theory. The proposed least-squares...
conference paper 2019
document
Wapenaar, C.P.A. (author)
The matrix-vector wave equation is a compact first-order differential equation. It was originally used for the analysis of elastodynamic plane waves in laterally invariant media. It has been extended by various authors for laterally varying media. Other authors derived a similar formalism for other wave phenomena. This paper starts with a...
journal article 2019
document
Reinicke Urruticoechea, C. (author), Wapenaar, C.P.A. (author)
The homogeneous Green’s function is the difference between an impulse response and its time-reversal. According to existing representation theorems, the homogeneous Green’s function associated with source–receiver pairs inside a medium can be computed from measurements at a boundary enclosing the medium. However, in many applications such as...
journal article 2019
document
Almagro Vidal, C. (author), van der Neut, J.R. (author), Wapenaar, C.P.A. (author)
Time-lapse changes in the subsurface can be analyzed by comparing seismic reflection data from two different states, one serving as the base survey and the second as the monitor survey. Conventionally, reflection data are acquired by placing active seismic sources at the acquisition surface. Alternatively, these data can be acquired from passive...
journal article 2019
document
Meles, G.A. (author), van der Neut, J.R. (author), van Dongen, K.W.A. (author), Wapenaar, C.P.A. (author)
Wavefield focusing is often achieved by time-reversal mirrors, where wavefields emitted by a source located at the focal point are evaluated at a closed boundary and sent back, after time-reversal, into the medium from that boundary. Mathematically, time-reversal mirrors are derived from closed-boundary integral representations of reciprocity...
journal article 2019
Searched for: +
(61 - 80 of 275)

Pages