Searched for: author%3A%22Grewe%2C+V.%22
(1 - 20 of 73)

Pages

document
Rao, P.V. (author), Yin, F. (author), Grewe, V. (author), Yamashita, Hiroshi (author), Jöckel, Patrick (author), Matthes, Sigrun (author), Mertens, Mariano (author), Frömming, Christine (author)
Aviation contributes to 3.5% of anthropogenic climate change in terms of Effective Radiative Forcing (ERF) and 5% in terms of temperature change. Aviation climate impact is expected to increase rapidly due to the growth of air transport sector in most regions of the world and the effects of the COVID-19 pandemic are expected to only have a...
abstract 2022
document
Maruhashi, J. (author), Grewe, V. (author), Frömming, Christine (author), Jöckel, Patrick (author), Dedoussi, I.C. (author)
The resilient growth of air travel demands a comprehensive understanding of the climate effects from aviation emissions. The current level of knowledge of the environmental repercussions of CO2 emissions is considerably higher than that of non-CO2 emissions, which includes nitrogen oxides (NOx), sulfur oxides (SOx), other aerosols like black...
abstract 2022
document
Matthes, Sigrun (author), Lührs, Benjamin (author), Dahlmann, K. (author), Linke, F. (author), Grewe, V. (author), Yin, F. (author), Shine, K.P. (author)
Aviation can reduce its climate impact by controlling its CO2-emission and non-CO2 effects, e.g. aviation-induced contrail-cirrus and ozone caused by nitrogen oxide emissions. One option is the implementation of operational measures which aim to avoid those atmospheric regions that are in particular sensitive to non-CO2 aviation effects, e.g....
abstract 2020
document
Lührs, Benjamin (author), Linke, F. (author), Matthes, Sigrun (author), Grewe, V. (author), Yin, F. (author), Shine, K.P. (author)
Air traffic contributes to anthropogenic global warming by about 5% due to CO2 emissions (about 1/3) and non-CO2 effects (about 2/3) primarily caused by emissions of NOx and water vapour as well as the formation of contrails. Since aviation is expected to maintain its trend to grow over the next decades, mitigation measures are required...
abstract 2020
document
Deck, K.T. (author), Grewe, V. (author), Yin, F. (author), Dedoussi, I.C. (author), Vos, Roelof (author), Proesmans, P. (author), Linke, Florian (author), Kaushik Radhakrishnan, Kaushik (author), Niklaβ, Malte (author)
Aviation ensures mobility for both passengers and goods. It is important as a transport sector for connections on and between continents. Nevertheless, aviation also contributes to anthropogenic climate change. The e_ects are usually divided in CO2 and non-CO2 e_ects and therefore not only CO2 emissions but also other emissions (e.g., NOx, water...
abstract 2021
document
Deck, K.T. (author), Grewe, V. (author), Yin, F. (author), Dedoussi, I.C. (author), Vos, Roelof (author), Proesmans, P. (author), Linke, Florian (author), Kaushik Radhakrishnan, Kaushik (author), Niklaβ, Malte (author)
Aviation is a highly necessary transport sector in our modern society. It guarantees mobility on a short- and long-range spectrum and is still a growing sector. However, aviation also contributes signi_cantly to the anthropogenic climate change via CO2 and non-CO2 e_ects. One possibility to reduce the climate impact of aviation would be to...
abstract 2020
document
Grewe, V. (author), Matthes, Sigrun (author), Dahlmann, K. (author)
The contribution of aviation to anthropogenic climate change results from CO2 and non-CO2 emissions. Latter comprises emissions of nitrogen oxides, water vapour, and aerosols as well as contrail and contrail-cirrus effects. A series of updates can be noted in recent studies related to the effects of NOx-emissions; the inclusion of two physical...
abstract 2020
document
Linke, F. (author), Radhakrishnan, K. (author), Grewe, V. (author), Vos, Roelof (author), Niklaß, Malte (author), Lührs, B. (author), Yin, F. (author), Dedoussi, I.C. (author), Proesmans, P. (author), Deck, K.T. (author)
Given the comparably high impact of aircraft emissions, especially their non-CO2 effects, on climate in the order of 5%, aviation stakeholders are required to act to reduce the warming effects of air traffic. Besides new operational procedures, like e.g. climate-optimized routing, this demands the development of completely new global-warming...
abstract 2020
document
Niklaß, Malte (author), Grewe, V. (author), Gollnick, V (author)
Approximately two third of aviation’s climate impact is caused by non-CO2 effects, like the production of ozone and the formation of contrail-cirrus clouds, which can be effectively prevented by re-routing flights around highly climate-sensitive areas. Although climate-optimized re-routing results in slightly longer flight times, increased fuel...
abstract 2020
document
Yamashita, H. (author), Yin, F. (author), Grewe, V. (author), Jockel, P. (author), Matthes, Sigrun (author), Kern, Bastian (author), Dahlmann, K. (author), Frömming, C. (author)
A climate-optimized routing is expected as an operational measure to reduce the climate impact of aviation, whereas this routing causes extra aircraft operating costs. This study performs some air traffic simulations of nine aircraft routing strategies which include the climate-optimized routing, and examines characteristics of those routings. A...
abstract 2020
document
Dahlmann, K. (author), Matthes, Sigrun (author), Yamashita, H. (author), Unterstrasser, S. (author), Grewe, V. (author), Marks, Tobias (author)
An operational measure to aim for mitigation of aviation climate impact that is inspired by migrant birds is to fly in aerodynamic formation. This operational measure adapted to human aircraft would eventually save fuel and is, therefore, expected to reduce the climate impact of aviation. As this method changes beside the total emission also the...
abstract 2020
document
Yin, F. (author), Grewe, V. (author), Gierens, K. (author)
iation is responsible for approximately 5% of global warming and is expected to increase substantially in the future. In the face of the continuing expansion of air traffic, mitigation of the aviation’s climate impact becomes challenging, but imperative. Among various mitigation options, hybrid electric aircraft (HEA) has drawn intensive...
abstract 2020
document
Emmerig, J. (author), Jockel, P. (author), Grewe, V. (author)
Supersonic transport was the subject of intense debate in the 1970s and commercial operation was eventually abandoned until recently due to economic and environmental concerns. Flight emissions at stratospheric altitude differ from tropospheric emissions mainly in terms of longevity. Long lifetimes of chemically reactive emissions, especially in...
abstract 2020
document
Maruhashi, J. (author), Mertens, Mariano (author), Grewe, V. (author), Dedoussi, I.C. (author)
Aviation’s contribution to anthropogenic global warming is estimated to be between 3 – 5% [1]. This assessment comprises two contributions: the well understood atmospheric impact of carbon dioxide (CO2) and the more uncertain non-CO2 effects. The latter pertain to persistent contrails and pollutants like nitrogen oxides (NOx), water vapor (H2O),...
abstract 2023
document
Frömming, C. (author), Grewe, V. (author), Brinkop, S. (author), Haslerud, Amund S. (author), Rosanka, S. (author), Matthes, Sigrun (author), van Manen, J. (author)
Emissions of aviation include CO2, H2O, NOx and particles. While CO2 has a long atmospheric residence time and is uniformly distributed in the atmosphere, non-CO2 gases, particles and their products have short atmospheric residence times and are heterogeneously distributed. Their climate effects depend on chemical and meteorological background...
abstract 2020
document
Castino, F. (author), Yin, F. (author), Grewe, V. (author), Soler, Manuel (author), Simorgh, Abolfazl (author), Yamashita, Hiroshi (author), Matthes, Sigrun (author), Baumann, Sabine (author), Linke, Florian (author)
Air traffic contributes to global warming through CO2 and non-CO2 effects, including the impact of NOx emissions on atmospheric ozone and methane, formation of contrails, and changes in the amount of stratospheric water vapour. The climate impact of non-CO2 effects is highly dependent on the background atmospheric conditions at the time and...
conference paper 2021
document
Yin, F. (author), Grewe, V. (author), van Manen, J. (author), Matthes, Sigrun (author), Yamashita, Hiroshi (author), Linke, Florian (author), Lührs, Benjamin (author)
For the first time, the algorithmic Climate Change Functions (aCCFs) for ozone, methane, water vapor, and persistent contrails have been developed within the ATM4E project to provide information on the climate sensitive regions, which can be conveniently implemented for the climate based flight routing. These aCCFs need to be verified before...
conference paper 2018
document
Niklaß, Malte (author), Lührs, Benjamin (author), Grewe, V. (author), Gollnick, Volker (author)
Within this study, the lack of incentivizing airlines to internalize their climate costs is tried to be closed by the introduction of climate-charged airspaces, as non-CO2 emissions have locationand time-dependent effects upon the climate. In order to create an incentive for airlines to minimize flight time and emissions in highly...
conference paper 2018
document
Rao, P.V. (author), Dwight, R.P. (author), Singh, D. (author), Maruhashi, J. (author), Dedoussi, I.C. (author), Grewe, V. (author), Frömming, Christine (author)
While efforts have been made to curb CO2 emissions from aviation, the more uncertain non-CO2 effects that contribute about two-thirds to the warming in terms of radiative forcing (RF), still require attention. The most important non-CO2 effects include persistent line-shaped contrails, contrail-induced cirrus clouds and nitrogen oxide (NOx)...
conference paper 2023
document
Radhakrishnan, Kaushik (author), Deck, K.T. (author), Proesmans, P. (author), Linke, Florian (author), Yin, F. (author), Grewe, V. (author), Vos, Roelof (author), Lührs, Benjamin (author), Niklaβ, Malte (author), Dedoussi, I.C. (author)
The aircraft’s environmental performance on fleet level is so far completely decoupled from the design process. The climate impact from aviation arising from non-CO2 effects are largely independent from CO2 emissions, but rather depend on the atmospheric state. Previously complex climate-chemistry models were used to evaluate the non-CO2...
conference paper 2022
Searched for: author%3A%22Grewe%2C+V.%22
(1 - 20 of 73)

Pages