Searched for: author%3A%22Hosseini-Toudeshky%2C+H%22
(1 - 3 of 3)
document
Hedayati, R. (author), Sadighi, M. (author), Mohammadi-Aghdam, M (author), Hosseini-Toudeshky, H (author)
Additive manufacturing techniques have made it possible to create open-cell porous structures with arbitrary micro-geometrical characteristics. Since a wide range of micro-geometrical features is available for making an implant, having a comprehensive knowledge of the mechanical response of cellular structures is very useful. In this study,...
journal article 2018
document
Hedayati, R. (author), Hosseini-Toudeshky, H. (author), Sadighi, M. (author), Mohammadi-Aghdam, M. (author), Zadpoor, A.A. (author)
Advances in additive manufacturing (AM) techniques have enabled fabrication of highly porous titanium implants that combine the excellent biocompatibility of bulk titanium with all the benefits that a regular volume-porous structure has to offer (e.g. lower stiffness values comparable to those of bone). Clinical application of such...
journal article 2018
document
Hedayati, R. (author), Hosseini-Toudeshky, H (author), Sadighi, M. (author), Mohammadi-Aghdam, M. (author), Zadpoor, A.A. (author)
The mechanical behavior of additively manufactured porous biomaterials has recently received increasing attention. While there is a relatively large body of data available on the static mechanical properties of such biomaterials, their fatigue behavior is not yet well-understood. That is partly because systematic study of the fatigue behavior...
journal article 2016