Searched for: author%3A%22Jahr%2C+H.%22
(1 - 10 of 10)
document
Li, Y. (author), Pavanram, P. (author), Bühring, J. (author), Rütten, S. (author), Schröder, K. U. (author), Zhou, J. (author), Pufe, T. (author), Wang, L. . (author), Zadpoor, A.A. (author), Jahr, H. (author)
Additively manufactured (AM) degradable porous metallic biomaterials offer unique opportunities for satisfying the design requirements of an ideal bone substitute. Among the currently available biodegradable metals, iron has the highest elastic modulus, meaning that it would benefit the most from porous design. Given the successful...
journal article 2023
document
Kubo, Yusuke (author), Beckmann, Rainer (author), Pahlavani, H. (author), Cruz Saldivar, M. (author), Szymanski, Katharina (author), Leeflang, M.A. (author), Mirzaali, Mohammad J. (author), Zadpoor, A.A. (author), Wruck, Christoph Jan (author), Jahr, H. (author)
Background: Nuclear factor erythroid 2–related factor 2 (Nrf2) is a crucial transcription factor for cellular redox homeostasis. The association of Nrf2 with elderly female osteoporotic has yet to be fully described. The aim was to elucidate a potential age-dependent Nrf2 contribution to female osteoporosis in mice. Methods: Eighteen female...
journal article 2022
document
Li, Y. (author), Pavanram, P. (author), Zhou, J. (author), Lietaert, K. (author), Taheri, P. (author), Li, W. (author), San, H. (author), Leeflang, M.A. (author), Mol, J.M.C. (author), Jahr, H. (author), Zadpoor, A.A. (author)
Additively manufacturing (AM) opens up the possibility for biodegradable metals to possess uniquely combined characteristics that are desired for bone substitution, including bone-mimicking mechanical properties, topologically ordered porous structure, pore interconnectivity and biodegradability. Zinc is considered to be one of the promising...
journal article 2020
document
Li, Y. (author), Pavanram, P. (author), Zhou, J. (author), Lietaert, K. (author), Bobbert, F.S.L. (author), Kubo, Yusuke (author), Leeflang, M.A. (author), Jahr, H. (author), Zadpoor, A.A. (author)
Topological design provides additively manufactured (AM) biodegradable porous metallic biomaterials with a unique opportunity to adjust their biodegradation behavior and mechanical properties, thereby satisfying the requirements for ideal bone substitutes. However, no information is available yet concerning the effect of topological design on...
journal article 2020
document
Tan Timur, Ufuk (author), Caron, Marjolein (author), van den Akker, Guus (author), van der Windt, Anna (author), Visser, Jenny (author), van Rhijn, Lodewijk (author), Weinans, Harrie (author), Welting, Tim (author), Emans, Pieter (author), Jahr, H. (author)
During standard expansion culture (i.e., plasma osmolarity, 280 mOsm) human articular chondrocytes dedifferentiate, making them inappropriate for autologous chondrocyte implantation to treat cartilage defects. Increasing the osmolarity of culture media to physiological osmolarity levels of cartilage (i.e., 380 mOsm), increases collagen type...
journal article 2019
document
Li, Y. (author), Jahr, H. (author), Lietaert, K. (author), Pavanram, P. (author), Yilmaz, A. (author), Fockaert, L.I. (author), Leeflang, M.A. (author), Pouran, B. (author), Gonzalez Garcia, Y. (author), Weinans, Harrie (author), Mol, J.M.C. (author), Zhou, J. (author), Zadpoor, A.A. (author)
Additively manufactured (AM) topologically ordered porous metallic biomaterials with the proper biodegradation profile offer a unique combination of properties ideal for bone regeneration. These include a fully interconnected porous structure, bone-mimicking mechanical properties, and the possibility of fully regenerating bony defects. Most...
journal article 2018
document
Li, Y. (author), Zhou, J. (author), Pavanram, P. (author), Leeflang, M.A. (author), Fockaert, L.I. (author), Pouran, B. (author), Tümer, N. (author), Schröder, K. U. (author), Mol, J.M.C. (author), Weinans, Harrie (author), Jahr, H. (author), Zadpoor, A.A. (author)
An ideal bone substituting material should be bone-mimicking in terms of mechanical properties, present a precisely controlled and fully interconnected porous structure, and degrade in the human body to allow for full regeneration of large bony defects. However, simultaneously satisfying all these three requirements has so far been highly...
journal article 2017
document
Van der Stok, J. (author), Koolen, M.K.E. (author), De Maat, M.P.M. (author), Amin Yavari, S. (author), Alblas, J. (author), Patka, P. (author), Verhaar, J.A.N. (author), Van Lieshout, E.E.M. (author), Zadpoor, A.A. (author), Weinans, H.H. (author), Jahr, H. (author)
Regeneration of load-bearing segmental bone defects is a major challenge in trauma and orthopaedic surgery. The ideal bone graft substitute is a biomaterial that provides immediate mechanical stability, while stimulating bone regeneration to completely bridge defects over a short period. Therefore, selective laser melted porous titanium,...
journal article 2015
document
Van der Stok, J. (author), Wang, H. (author), Yavari, S.A. (author), Siebelt, M. (author), Sandker, M. (author), Waarsing, J.H. (author), Verhaar, J.A.N. (author), Jahr, H. (author), Zadpoor, A.A. (author), Leeuwenburgh, S.C.G. (author), Weinans, H. (author)
Porous titanium scaffolds are a promising class of biomaterials for grafting large bone defects, because titanium provides sufficient mechanical support, whereas its porous structure allows bone ingrowth resulting in good osseointegration. To reinforce porous titanium scaffolds with biological cues that enhance and continue bone regeneration,...
journal article 2013
document
Van Buul, G. (author), Kotek, G. (author), Wielopolski, P.A. (author), Farrell, E. (author), Bos, P.K. (author), Weinans, H. (author), Grohnert, A.U. (author), Jahr, H. (author), Verhaar, J.A.N. (author), Krestin, G.P. (author), Van Osch, G.J.V.M. (author), Bernsen, M.R. (author)
Background: Articular cartilage has very limited intrinsic regenerative capacity, making cell-based therapy a tempting approach for cartilage repair. Cell tracking can be a major step towards unraveling and improving the repair process of these therapies. We studied superparamagnetic iron oxides (SPIO) for labeling human bone marrow-derived...
journal article 2011
Searched for: author%3A%22Jahr%2C+H.%22
(1 - 10 of 10)