Searched for: author:"Kuipers, L."
(1 - 14 of 14)
document
le Feber, B (author), Sipe, J. E. (author), Wulf, M. (author), Kuipers, L. (author), Rotenberg, Nir (author)
Light is a union of electric and magnetic fields, and nowhere is the complex relationship between these fields more evident than in the near fields of nanophotonic structures. There, complicated electric and magnetic fields varying over subwavelength scales are generally present, which results in photonic phenomena such as extraordinary...
journal article 2019
document
Alpeggiani, F. (author), Bliokh, K. Y. (author), Nori, F. (author), Kuipers, L. (author)
Optical helicity density is usually discussed for monochromatic electromagnetic fields in free space. It plays an important role in the interaction with chiral molecules or nanoparticles. Here we introduce the optical helicity density in a dispersive isotropic medium. Our definition is consistent with biorthogonal Maxwell electromagnetism in...
journal article 2018
document
Gong, S. (author), Alpeggiani, F. (author), Sciacca, Beniamino (author), Garnett, Erik C. (author), Kuipers, L. (author)
The emergence of two-dimensional transition metal dichalcogenide materials has sparked intense activity in valleytronics, as their valley information can be encoded and detected with the spin angular momentum of light. We demonstrate the valley-dependent directional coupling of light using a plasmonic nanowire-tungsten disulfide (WS<sub>2<...
journal article 2018
document
Verschueren, D.V. (author), Pud, S. (author), Shi, X. (author), de Angelis, L. (author), Kuipers, L. (author), Dekker, C. (author)
Solid-state nanopores are single-molecule sensors that hold great potential for rapid protein and nucleic-acid analysis. Despite their many opportunities, the conventional ionic current detection scheme that is at the heart of the sensor suffers inherent limitations. This scheme intrinsically couples signal strength to the driving voltage,...
journal article 2018
document
Alpeggiani, F. (author), Gong, Su Hyun (author), Kuipers, L. (author)
The two-dimensional excitons of transition metal dichalcogenide (TMDC) monolayers make these materials extremely promising for optical and optoelectronic applications. When the excitons interact with the electromagnetic field, they will give rise to exciton-polaritons, i.e., modes that propagate in the material plane while being confined in...
journal article 2018
document
de Angelis, L. (author), Alpeggiani, F. (author), Di Falco, Andrea (author), Kuipers, L. (author)
Phase singularities are locations where light is twisted like a corkscrew, with positive or negative topological charge depending on the twisting direction. Among the multitude of singularities arising in random wave fields, some can be found at the same location, but only when they exhibit opposite topological charge, which results in their...
journal article 2017
document
Alpeggiani, F. (author), Parappurath, N. (author), Verhagen, Ewold (author), Kuipers, L. (author)
The scattering matrix is a fundamental tool to quantitatively describe the properties of resonant systems. In particular, it enables the understanding of many photonic devices of current interest, such as photonic metasurfaces and nanostructured optical scatterers. In this contribution, we show that the scattering matrix of a photonic system...
conference paper 2017
document
Kosters, N.D. (author), De Hoogh, Anouk (author), Zeijlemaker, Hans (author), Acar, Hakkl (author), Rotenberg, Nir (author), Kuipers, L. (author)
We introduce core-shell plasmonic nanohelices, highly tunable structures that have a different response in the visible for circularly polarized light of opposite handedness. The glass core of the helices is fabricated using electron beam induced deposition and the pure gold shell is subsequently sputter coated. Optical measurements allow us...
journal article 2017
document
Parappurath, N. (author), Alpeggiani, F. (author), Kuipers, L. (author), Verhagen, Ewold (author)
We observe that the asymmetric transmission (AT) through photonic systems with a resonant chiral response is strongly related to the far-field properties of eigenmodes of the system. This understanding can be used to predict the AT for any resonant system from its complex eigenmodes. We find that the resonant chiral phenomenon of AT is...
journal article 2017
document
Alpeggiani, F. (author), Parappurath, N. (author), Verhagen, E. (author), Kuipers, L. (author)
It is well known that the quasinormal modes (or resonant states) of photonic structures can be associated with the poles of the scattering matrix of the system in the complex-frequency plane. In this work, the inverse problem, i.e., the reconstruction of the scattering matrix from the knowledge of the quasinormal modes, is addressed. We develop...
journal article 2017
document
de Angelis, L. (author), Alpeggiani, F. (author), Di Falco, Andrea (author), Kuipers, L. (author)
Phase singularities can be created and annihilated, but always in pairs. With optical near-field measurements, we track singularities in random waves as a function of wavelength, and discover correlations between creation and annihilation events.
conference paper 2017
document
Parappurath, N. (author), Alpeggiani, F. (author), Kuipers, L. (author), Verhagen, E. (author)
We develop a theoretical formalism which explains asymmetric transmission (AT) in chiral resonators from their eigenmodes. We derive a fundamental limit for AT and propose the design of a chiral photonic crystal offering 84% AT.
conference paper 2017
document
de Angelis, L. (author), Alpeggiani, F. (author), Di Falco, Andrea (author), Kuipers, L. (author)
Phase singularities arise in scalar random waves, with spatial distribution reminiscent of particles in liquids. Supporting near-field experiment with analytical theory we show how such spatial distribution changes when considering vector waves.
conference paper 2016
document
Kuipers, L. (author), Timman, R. (author)
book 1963
Searched for: author:"Kuipers, L."
(1 - 14 of 14)