Searched for: author%3A%22Leeflang%2C+M.A.%22
(1 - 11 of 11)
document
Putra, N.E. (author), Leeflang, M.A. (author), Klimopoulou, M. (author), Dong, J. (author), Taheri, P. (author), Huan, Z. (author), Fratila-Apachitei, E.L. (author), Mol, J.M.C. (author), Chang, J. (author), Zhou, J. (author), Zadpoor, A.A. (author)
The development of biodegradable Fe-based bone implants has rapidly progressed in recent years. Most of the challenges encountered in developing such implants have been tackled individually or in combination using additive manufacturing technologies. Yet not all the challenges have been overcome. Herein, we present porous FeMn-akermanite...
journal article 2023
document
Dong, J. (author), Tümer, N. (author), Leeflang, M.A. (author), Taheri, P. (author), Fratila-Apachitei, E.L. (author), Mol, J.M.C. (author), Zadpoor, A.A. (author), Zhou, J. (author)
Porous biodegradable Mg and its alloys are considered to have a great potential to serve as ideal bone substitutes. The recent progress in additive manufacturing (AM) has prompted its application to fabricate Mg scaffolds with geometrically ordered porous structures. Extrusion-based AM, followed by debinding and sintering, has been recently...
journal article 2022
document
Putra, N.E. (author), Borg, K. G.N. (author), Diaz Payno, P.J. (author), Leeflang, M.A. (author), Klimopoulou, M. (author), Taheri, P. (author), Mol, J.M.C. (author), Fratila-Apachitei, E.L. (author), Zhou, J. (author), Zadpoor, A.A. (author)
Advanced additive manufacturing techniques have been recently used to tackle the two fundamental challenges of biodegradable Fe-based bone-substituting materials, namely low rate of biodegradation and insufficient bioactivity. While additively manufactured porous iron has been somewhat successful in addressing the first challenge, the limited...
journal article 2022
document
Putra, N.E. (author), Leeflang, M.A. (author), Minneboo, M.B. (author), Taheri, P. (author), Fratila-Apachitei, E.L. (author), Mol, J.M.C. (author), Zhou, J. (author), Zadpoor, A.A. (author)
Extrusion-based 3D printing followed by debinding and sintering is a powerful approach that allows for the fabrication of porous scaffolds from materials (or material combinations) that are otherwise very challenging to process using other additive manufacturing techniques. Iron is one of the materials that have been recently shown to be...
journal article 2021
document
Putra, N.E. (author), Leeflang, M.A. (author), Taheri, P. (author), Fratila-Apachitei, E.L. (author), Mol, J.M.C. (author), Zhou, J. (author), Zadpoor, A.A. (author)
Additively manufactured biodegradable porous iron has been only very recently demonstrated. Two major limitations of such a biomaterial are very low biodegradability and incompatibility with magnetic resonance imaging (MRI). Here, we present a novel biomaterial that resolves both of those limitations. We used extrusion-based 3D printing to...
journal article 2021
document
Dong, J. (author), Tümer, N. (author), Putra, N.E. (author), Zhu, Jia-Ning (author), Li, Y. (author), Leeflang, M.A. (author), Taheri, P. (author), Fratila-Apachitei, E.L. (author), Mol, J.M.C. (author), Zadpoor, A.A. (author), Zhou, J. (author)
Additively manufactured (AM) biodegradable magnesium (Mg) scaffolds with precisely controlled and fully interconnected porous structures offer unprecedented potential as temporary bone substitutes and for bone regeneration in critical-sized bone defects. However, current attempts to apply AM techniques, mainly powder bed fusion AM, for the...
journal article 2021
document
Li, Y. (author), Pavanram, P. (author), Zhou, J. (author), Lietaert, K. (author), Taheri, P. (author), Li, W. (author), San, H. (author), Leeflang, M.A. (author), Mol, J.M.C. (author), Jahr, H. (author), Zadpoor, A.A. (author)
Additively manufacturing (AM) opens up the possibility for biodegradable metals to possess uniquely combined characteristics that are desired for bone substitution, including bone-mimicking mechanical properties, topologically ordered porous structure, pore interconnectivity and biodegradability. Zinc is considered to be one of the promising...
journal article 2020
document
Li, Y. (author), Jahr, H. (author), Lietaert, K. (author), Pavanram, P. (author), Yilmaz, A. (author), Fockaert, L.I. (author), Leeflang, M.A. (author), Pouran, B. (author), Gonzalez Garcia, Y. (author), Weinans, Harrie (author), Mol, J.M.C. (author), Zhou, J. (author), Zadpoor, A.A. (author)
Additively manufactured (AM) topologically ordered porous metallic biomaterials with the proper biodegradation profile offer a unique combination of properties ideal for bone regeneration. These include a fully interconnected porous structure, bone-mimicking mechanical properties, and the possibility of fully regenerating bony defects. Most...
journal article 2018
document
Naddaf Dezfuli, S. (author), Huan, Z. (author), Mol, J.M.C. (author), Leeflang, M.A. (author), Chang, Jiang (author), Zhou, J. (author)
The present research was aimed at developing magnesium-matrix composites that could allow effective control over their physiochemical and mechanical responses when in contact with physiological solutions. A biodegradable, bioactive ceramic - bredigite was chosen as the reinforcing phase in the composites, based on the hypothesis that the...
journal article 2017
document
Li, Y. (author), Zhou, J. (author), Pavanram, P. (author), Leeflang, M.A. (author), Fockaert, L.I. (author), Pouran, B. (author), Tümer, N. (author), Schröder, K. U. (author), Mol, J.M.C. (author), Weinans, Harrie (author), Jahr, H. (author), Zadpoor, A.A. (author)
An ideal bone substituting material should be bone-mimicking in terms of mechanical properties, present a precisely controlled and fully interconnected porous structure, and degrade in the human body to allow for full regeneration of large bony defects. However, simultaneously satisfying all these three requirements has so far been highly...
journal article 2017
document
Naddaf Dezfuli, S. (author), Huan, Z. (author), Mol, J.M.C. (author), Leeflang, M.A. (author), Chang, J. (author), Zhou, J. (author)
The human body is a buffered environment where pH is effectively maintained. HEPES is a biological buffer often used to mimic the buffering activity of the body in in vitro studies on the degradation behavior of magnesium. However, the influence of HEPES on the degradation behavior of magnesium in the DMEM pseudo-physiological solution has not...
journal article 2014
Searched for: author%3A%22Leeflang%2C+M.A.%22
(1 - 11 of 11)