Searched for: author%3A%22Liang%2C+M.%22
(1 - 19 of 19)
document
Liang, M. (author), Chang, Z. (author), Zhang, Y. (author), Cheng, H. (author), He, S. (author), Schlangen, E. (author), Šavija, B. (author)
This study aims to experimentally investigate the autogenous deformation and the stress evolution in restrained high-volume ground granulated blast furnace slag (GGBFS) concrete. The Temperature Stress Testing Machine (TSTM) and Autogenous Deformation Testing Machine (ADTM) were used to study the macro-scale autogenous deformation and stress...
journal article 2023
document
Liang, M. (author), He, S. (author), Gan, Yidong (author), Zhang, Hongzhi (author), Chang, Z. (author), Schlangen, E. (author), Šavija, B. (author)
This paper employs computer vision techniques to predict the micromechanical properties (i.e., elastic modulus and hardness) of cement paste based on an input of Backscattered Electron (BSE) images. A dataset comprising 40,000 nanoindentation tests and 40,000 BSE micrographs was built by express nanoindentation test and Scanning Electron...
journal article 2023
document
Chang, Z. (author), Liang, M. (author), Xu, Y. (author), Wan, Z. (author), Schlangen, E. (author), Šavija, B. (author)
In this study, an experimental setup to characterize the early-age creep of 3D printable mortar was proposed. The testing protocol comprises quasi-static compressive loading-unloading cycles, with 180-s holding periods in between. An analytical model based on a double power law was used to predict creep compliance with hardening time and...
journal article 2023
document
Chen, Y. (author), Liang, M. (author), Zhang, Y. (author), Li, Z. (author), Šavija, B. (author), Schlangen, E. (author), Copuroglu, Oguzhan (author)
Autogenous shrinkage may be a critical issue concerning the use of limestone-calcined clay-cement (LC3) in high-performance concrete and 3D printable cementitious materials, which have relatively low water to binder (W/B) ratio. Adding an internal curing agent, i.e., superabsorbent polymer (SAP), could be a viable solution in this context....
journal article 2023
document
Chen, Y. (author), Zhang, Y. (author), He, S. (author), Liang, M. (author), Zhang, Yamei (author), Schlangen, E. (author), Copuroglu, Oguzhan (author)
Limestone-calcined clay-cement (LC3), as one of the most promising sustainable cements, has been under development over the past decade. However, many uncertainties remain regarding its rheological behaviors, such as the metakaolin content of calcined clay. This study aims to investigate the effect of increasing the content of fine-grained...
journal article 2023
document
Liang, M. (author), Schlangen, E. (author), Šavija, B. (author)
Stress evolution of restrained concrete is directly related to early-age cracking (EAC) potential of concrete, which is a tricky problem that often happens in engineering practice. Due to the global objective of carbon reduction, Ground granulated blast furnace slag (GGBFS) concrete has become a more promising binder comparing with Ordinary...
book chapter 2023
document
He, S. (author), Liang, M. (author), Yang, En-hua (author), Schlangen, E. (author)
The properties of the interfacial transition zone (ITZ) between microfiber and cement-based matrix are of primary significance for the overall behavior of strain hardening cementitious composites (SHCCs). However, due to the relatively small diameter of polymeric microfibers (e.g., PVA fiber), it is technically difficult to obtain...
book chapter 2023
document
Liang, M. (author), Chang, Z. (author), Wan, Z. (author), Gan, Y. (author), Schlangen, E. (author), Šavija, B. (author)
This study aims to provide an efficient and accurate machine learning (ML) approach for predicting the creep behavior of concrete. Three ensemble machine learning (EML) models are selected in this study: Random Forest (RF), Extreme Gradient Boosting Machine (XGBoost) and Light Gradient Boosting Machine (LGBM). Firstly, the creep data in...
journal article 2022
document
Zhang, Y. (author), Liang, M. (author), Gan, Y. (author), Copuroglu, Oguzhan (author)
Slag rim mainly consists of secondary precipitations such as C–S–H gel phase and hydrotalcite-like phase, which originate from the hydration of slag. In this paper, the micro-mechanical properties of slag rim were characterized by nanoindentation in combination with SEM. It was found that, compared to the C–S–H gel phase, slag rim showed about a...
journal article 2022
document
Liang, M. (author), Gan, Y. (author), Chang, Z. (author), Wan, Z. (author), Schlangen, E. (author), Šavija, B. (author)
This study aims to provide an efficient alternative for predicting creep modulus of cement paste based on Deep Convolutional Neural Network (DCNN). First, a microscale lattice model for short-term creep is adopted to build a database that contains 18,920 samples. Then, 3 DCNNs with different consecutive convolutional layers are built to learn...
journal article 2022
document
Li, Z. (author), Liang, X. (author), Liu, C. (author), Liang, M. (author), van Breugel, K. (author), Ye, G. (author)
This study investigates the deformation of free and stress of restrained alkali-activated slag concrete (AASC), respectively, under semi-adiabatic condition. The concrete shows first thermal expansion, which is compensated soon by autogenous shrinkage. The subsequent cooling down of the concrete aggravates shrinkage and development of tensile...
journal article 2022
document
Chang, Z. (author), Zhang, Hongzhi (author), Liang, M. (author), Schlangen, E. (author), Šavija, B. (author)
This paper explores buildability quantification of randomly meshed 3D printed concrete objects by considering structural failure by elastic buckling. The newly proposed model considers the most relevant printing parameters, including time-dependent material behaviors, printing velocity, localized damage and influence of sequential printing...
journal article 2022
document
Zhang, Y. (author), Liang, M. (author), Gan, Y. (author), Copuroglu, Oguzhan (author)
This paper reports the carbonation characteristics of a cement-slag system exposed to accelerated carbonation testing, and its improved carbonation resistance with the increasing MgO content in blast furnace slag, in which hydrotalcite-like phase plays a key role. Our research showed that the hydrotalcite-like phase started to carbonate upon...
journal article 2022
document
Liang, M. (author), Chang, Z. (author), He, S. (author), Chen, Y. (author), Gan, Y. (author), Schlangen, E. (author), Šavija, B. (author)
Early-age stress (EAS) is an important index for evaluating the early-age cracking risk of concrete. This paper encompasses a thermo-chemo-mechanical (TCM) model and active ensemble learning (AEL) for predicting the EAS evolution. The TCM model provides the data for the AEL model. First, based on Fourier's law, Arrhenius’ equation, and rate...
journal article 2022
document
Gan, Y. (author), Zhang, Hongzhi (author), Liang, M. (author), Zhang, Y. (author), Schlangen, E. (author), van Breugel, K. (author), Šavija, B. (author)
In this study, the flexural strength and fatigue properties of interfacial transition zone (ITZ) were experimentally investigated at the micrometre length scale. The hardened cement paste cantilevers (150 × 150 × 750 μm<sup>3</sup>) attached to a quartzite aggregate surface were prepared and tested under the monotonic and cyclic load using a...
journal article 2022
document
Chang, Z. (author), Liang, M. (author), Xu, Y. (author), Schlangen, E. (author), Šavija, B. (author)
This research studies the impact of localized damage and deformed printing geometry on the structural failure of plastic collapse for 3D concrete printing (3DCP) using the lattice model. Two different approaches are utilized for buildability quantification: the (previously developed) load-unload method, which updates and relaxes the printing...
journal article 2022
document
Liang, M. (author), Li, Z. (author), He, S. (author), Chang, Z. (author), Gan, Y. (author), Schlangen, E. (author), Šavija, B. (author)
Stress evolution of restrained concrete is a significant direct index in early-age cracking (EAC) analysis of concrete. This study presents experiments and numerical modelling of the early-age stress evolution of Ground granulated blast furnace slag (GGBFS) concrete, considering the development of autogenous deformation and creep. Temperature...
journal article 2022
document
Schlangen, E. (author), Liang, M. (author), Šavija, B. (author)
The study aims to investigate the mechanism of early-age cracks in different massive concrete structures (i.e. tunnels, bridge foundations and underground parking garages), with the objective of answering the following three specific questions: <br/><br/>1) How does the parameters of concrete proportion mix (e.g. w/c ratio, cementitious...
book chapter 2022
document
Gan, Y. (author), Zhang, Hongzhi (author), Liang, M. (author), Schlangen, E. (author), van Breugel, K. (author), Šavija, B. (author)
In this study, a numerical model using a 2D lattice network is developed to investigate the fatigue behaviour of cement paste at the microscale. Images of 2D microstructures of cement pastes obtained from XCT tests are used as inputs and mapped to the lattice model. Different local mechanical and fatigue properties are assigned to different...
journal article 2021
Searched for: author%3A%22Liang%2C+M.%22
(1 - 19 of 19)