Searched for: author%3A%22Sasamoto%2C+T.%22
(1 - 3 of 3)
document
Carinci, G. (author), Giardina, C. (author), Redig, F.H.J. (author), Sasamoto, T. (author)
By using the algebraic construction outlined in Carinci et al. (arXiv:?1407.?3367, 2014), we introduce several Markov processes related to the Uq(su(1,1)) quantum Lie algebra. These processes serve as asymmetric transport models and their algebraic structure easily allows to deduce duality properties of the systems. The results include: (a) the...
journal article 2016
document
Carinci, G. (author), Giardina, C. (author), Redig, F.H.J. (author), Sasamoto, T. (author)
We study a new process, which we call ASEP(q, j ), where particles move asymmetrically on a one-dimensional integer lattice with a bias determined by q ? (0, 1) and where at most 2 j ? N particles per site are allowed. The process is constructed from a (2 j + 1)-dimensional representation of a quantum Hamiltonian with Uq (sl2) invariance by...
journal article 2015
document
Carinci, G. (author), Giardinà, C (author), Redig, F.H.J. (author), Sasamoto, T (author)
We study a new process, which we call ASEP(q, j), where particles move asymmetrically on a one-dimensional integer lattice with a bias determined by q ∈ (0, 1) and where at most 2 j ∈ N particles per site are allowed. The process is constructed from a (2 j + 1)-dimensional representation of a quantum Hamiltonian with Uq (sl2) invariance by...
journal article 2015