Searched for: author%3A%22Ye%2C+G.%22
(1 - 4 of 4)
document
Chen, J. (author), Ye, G. (author)
Cracking is inevitable during the service period of concrete structures. They are preferential ingression channels for aggressive ions. It is difficult or even impossible to repair all the cracks due to the limitation of practical conditions. However, cracks have potentials to self-heal due to further hydration and carbonization. The effect of...
journal article 2019
document
Chen, J. (author), Liu, Xian (author), Ye, G. (author)
Microcracks play vital roles in the prediction of the service life of concrete structure. Because microcracks in concrete structure are the preferential ingression channels for aggressive ions, e.g., chloride, sulphate, etc. However, microcracks have potentials to self-heal autogenously due to the continuous hydration of unhydrated cement,...
conference paper 2016
document
Sherzer, G. (author), Gao, P. (author), Ye, G. (author), Gal, E. (author)
The heterogeneity of the concrete may be considered on different size scales of observation, ranging from the atomistic scale (10-10m), characterized by the behavior of crystalline particles of hydrated Portland cement, to the macroscopic scale (101 m), where concrete has traditionally been considered homogeneous. The multiscale framework we are...
conference paper 2016
document
Huang, H. (author), Ye, G. (author), Pel, Leo (author)
The aim of this study is to investigate the effect of water migration from cracks into the bulk paste on autogenous self-healing. Nuclear magnetic resonance (NMR) technique was utilized to monitor water migration from cracks into the bulk paste during the process of autogenous self-healing. NMR results show that initially the water in the...
journal article 2016
Searched for: author%3A%22Ye%2C+G.%22
(1 - 4 of 4)