Searched for: author%3A%22Yin%2C+F.%22
(1 - 20 of 40)

Pages

document
Saez Ortuño, M.A. (author), Yin, F. (author), Gangoli Rao, A. (author), Vos, Roelof (author), Proesmans, P. (author)
As climate change aggravates, the aviation sector strives to minimize its climate footprint. To this end, international organizations, such as ICAO and ACARE, are promoting mitigation measures including novel technologies, operations, and energy carriers to reduce aircraft emissions significantly. Hydrogen (H2) as an alternative fuel has the...
conference paper 2023
document
Yin, F. (author), Grewe, V. (author), Castino, F. (author), Rao, P.V. (author), Matthes, S (author), Dahlmann, K. (author), Dietmüller, Simone (author), Frömming, C. (author), Yamashita, H. (author)
The Modular Earth Submodel System (MESSy) provides an interface to couple submodels to a base model via a modular flexible data management facility. This paper presents the newly developed MESSy submodel, ACCF version 1.0 (ACCF 1.0), based on algorithmic Climate Change Functions version 1.0 (aCCFs 1.0), which describes the climate impact of...
journal article 2023
document
Saluja, H.S. (author), Yin, F. (author), Gangoli Rao, A. (author), Grewe, V. (author)
The climate impact of aviation is considerably different from that of other transport modes. The turbofan engine’s efficiency can be increased by increasing the Operating Pressure Ratio (OPR), bypass ratio (BPR) and Turbine Inlet Temperature (TIT), thereby reducing CO2 and H2O emissions. However, this may have an adverse effect on the secondary...
journal article 2023
document
Simorgh, Abolfazl (author), Soler, Manuel (author), González-Arribas, Daniel (author), Linke, Florian (author), Lührs, Benjamin (author), Yin, F. (author), Castino, F. (author), Grewe, V. (author), Meuser, Maximilian M. (author)
The climate impact of non-CO2 emissions, which are responsible for two-thirds of aviation radiative forcing, highly depends on the atmospheric chemistry and weather conditions. Hence, by planning aircraft trajectories to reroute areas where the non-CO2 climate impacts are strongly enhanced, called climate-sensitive regions, there is a...
journal article 2023
document
Dietmüller, Simone (author), Matthes, Sigrun (author), Dahlmann, Katrin (author), Yamashita, Hiroshi (author), Simorgh, Abolfazl (author), Lührs, Benjamin (author), Grewe, V. (author), Yin, F. (author), Castino, F. (author)
Aviation aims to reduce its climate effect by adopting trajectories that avoid regions of the atmosphere where aviation emissions have a large impact. To that end, prototype algorithmic climate change functions (aCCFs) can be used, which provide spatially and temporally resolved information on aviation's climate effect in terms of future near...
journal article 2023
document
Rao, P.V. (author), Yin, F. (author), Grewe, V. (author), Yamashita, Hiroshi (author), Jöckel, Patrick (author), Matthes, Sigrun (author), Mertens, Mariano (author), Frömming, Christine (author)
Aviation contributes to 3.5% of anthropogenic climate change in terms of Effective Radiative Forcing (ERF) and 5% in terms of temperature change. Aviation climate impact is expected to increase rapidly due to the growth of air transport sector in most regions of the world and the effects of the COVID-19 pandemic are expected to only have a...
abstract 2022
document
Radhakrishnan, Kaushik (author), Deck, K.T. (author), Proesmans, P. (author), Linke, Florian (author), Yin, F. (author), Grewe, V. (author), Vos, Roelof (author), Lührs, Benjamin (author), Niklaβ, Malte (author), Dedoussi, I.C. (author)
The aircraft’s environmental performance on fleet level is so far completely decoupled from the design process. The climate impact from aviation arising from non-CO2 effects are largely independent from CO2 emissions, but rather depend on the atmospheric state. Previously complex climate-chemistry models were used to evaluate the non-CO2...
conference paper 2022
document
Blondeel, Tim (author), Yin, F. (author), Gangoli Rao, A. (author)
The fuel efficiency of turbofan engines has improved significantly, hence reducing aviation's CO2 emissions. However, the increased operating pressure and temperature for fuel efficiency cause adverse effects on NOx emissions. Therefore, a novel engine concept, which can reduce NOx emissions without affecting the cycle efficiency, is of high...
conference paper 2022
document
Simorgh, Abolfazl (author), Soler, Manuel (author), González-Arribas, Daniel (author), Matthes, Sigrun (author), Grewe, V. (author), Dietmüller, Simone (author), Baumann, Sabine (author), Yin, F. (author), Castino, F. (author)
The strong growth rate of the aviation industry in recent years has created significant challenges in terms of environmental impact. Air traffic contributes to climate change through the emission of carbon dioxide (CO<sub>2</sub>) and other non-CO<sub>2</sub> effects, and the associated climate impact is expected to soar further. The...
review 2022
document
Rao, P.V. (author), Yin, F. (author), Grewe, V. (author), Yamashita, Hiroshi (author), Jöckel, Patrick (author), Matthes, Sigrun (author), Mertens, Mariano (author), Frömming, Christine (author)
One possibility to reduce the climate impact of aviation is the avoidance of climate-sensitive regions, which is synonymous with climate-optimised flight planning. Those regions can be identified by algorithmic Climate Change Functions (aCCFs) for nitrogen oxides (NOx), water vapour (H2O) as well as contrail cirrus, which provide a measure of...
journal article 2022
document
Castino, F. (author), Yin, F. (author), Grewe, V. (author), Soler, Manuel (author), Simorgh, Abolfazl (author), Yamashita, Hiroshi (author), Matthes, Sigrun (author), Baumann, Sabine (author), Linke, Florian (author)
Air traffic contributes to global warming through CO2 and non-CO2 effects, including the impact of NOx emissions on atmospheric ozone and methane, formation of contrails, and changes in the amount of stratospheric water vapour. The climate impact of non-CO2 effects is highly dependent on the background atmospheric conditions at the time and...
conference paper 2021
document
Deck, K.T. (author), Grewe, V. (author), Yin, F. (author), Dedoussi, I.C. (author), Vos, Roelof (author), Proesmans, P. (author), Linke, Florian (author), Kaushik Radhakrishnan, Kaushik (author), Niklaβ, Malte (author)
Aviation ensures mobility for both passengers and goods. It is important as a transport sector for connections on and between continents. Nevertheless, aviation also contributes to anthropogenic climate change. The e_ects are usually divided in CO2 and non-CO2 e_ects and therefore not only CO2 emissions but also other emissions (e.g., NOx, water...
abstract 2021
document
Yamashita, Hiroshi (author), Yin, F. (author), Grewe, V. (author), Jöckel, Patrick (author), Matthes, Sigrun (author), Kern, Bastian (author), Dahlmann, Katrin (author), Frömming, Christine (author)
Climate-optimized routing is an operational measure to effectively reduce the climate impact of aviation with a slight increase in aircraft operating costs. This study examined variations in the flight characteristics among five aircraft routing strategies and discusses several characteristics of those routing strategies concerning typical...
journal article 2021
document
Lührs, Benjamin (author), Linke, Florian (author), Matthes, Sigrun (author), Grewe, V. (author), Yin, F. (author)
Air traffic contributes to anthropogenic global warming by about 5% due to CO<sub>2</sub> emissions and non-CO<sub>2</sub> effects, which are primarily caused by the emission of NO<sub>x</sub> and water vapor as well as the formation of contrails. Since-in the long term-the aviation industry is expected to maintain its trend to grow,...
journal article 2021
document
Matthes, Sigrun (author), Lührs, Benjamin (author), Dahlmann, K. (author), Linke, F. (author), Grewe, V. (author), Yin, F. (author), Shine, K.P. (author)
Aviation can reduce its climate impact by controlling its CO2-emission and non-CO2 effects, e.g. aviation-induced contrail-cirrus and ozone caused by nitrogen oxide emissions. One option is the implementation of operational measures which aim to avoid those atmospheric regions that are in particular sensitive to non-CO2 aviation effects, e.g....
abstract 2020
document
Lührs, Benjamin (author), Linke, F. (author), Matthes, Sigrun (author), Grewe, V. (author), Yin, F. (author), Shine, K.P. (author)
Air traffic contributes to anthropogenic global warming by about 5% due to CO2 emissions (about 1/3) and non-CO2 effects (about 2/3) primarily caused by emissions of NOx and water vapour as well as the formation of contrails. Since aviation is expected to maintain its trend to grow over the next decades, mitigation measures are required...
abstract 2020
document
Gangoli Rao, A. (author), Yin, F. (author)
Aviation is the backbone of our modern society. At present, around 4.5 Billion passengers travel through the air every year and aviation is responsible for around 5 % of anthropogenic causes of Global Warming (Lee et al, 2009). With the increase in global GDP, the number of travellers is expected to increase to 7.5 Billion by 2037 and to around...
abstract 2020
document
Deck, K.T. (author), Grewe, V. (author), Yin, F. (author), Dedoussi, I.C. (author), Vos, Roelof (author), Proesmans, P. (author), Linke, Florian (author), Kaushik Radhakrishnan, Kaushik (author), Niklaβ, Malte (author)
Aviation is a highly necessary transport sector in our modern society. It guarantees mobility on a short- and long-range spectrum and is still a growing sector. However, aviation also contributes signi_cantly to the anthropogenic climate change via CO2 and non-CO2 e_ects. One possibility to reduce the climate impact of aviation would be to...
abstract 2020
document
Linke, F. (author), Radhakrishnan, K. (author), Grewe, V. (author), Vos, Roelof (author), Niklaß, Malte (author), Lührs, B. (author), Yin, F. (author), Dedoussi, I.C. (author), Proesmans, P. (author), Deck, K.T. (author)
Given the comparably high impact of aircraft emissions, especially their non-CO2 effects, on climate in the order of 5%, aviation stakeholders are required to act to reduce the warming effects of air traffic. Besides new operational procedures, like e.g. climate-optimized routing, this demands the development of completely new global-warming...
abstract 2020
document
Yamashita, H. (author), Yin, F. (author), Grewe, V. (author), Jockel, P. (author), Matthes, Sigrun (author), Kern, Bastian (author), Dahlmann, K. (author), Frömming, C. (author)
A climate-optimized routing is expected as an operational measure to reduce the climate impact of aviation, whereas this routing causes extra aircraft operating costs. This study performs some air traffic simulations of nine aircraft routing strategies which include the climate-optimized routing, and examines characteristics of those routings. A...
abstract 2020
Searched for: author%3A%22Yin%2C+F.%22
(1 - 20 of 40)

Pages