Searched for: author%3A%22van+Ginkel%2C+G.J.%22
(1 - 4 of 4)
document
van Ginkel, G.J. (author)
In this thesis we study the Symmetric Exclusion Process (SEP) and the Discrete Gaussian Free Field (DGFF) on compact Riemannian manifolds. In particular, we obtain the hydrodynamic limit and the equilibrium fluctuations of SEP and we show that the DGFF converges to its continuous counterpart. To define these discrete models, we construct grids...
doctoral thesis 2021
document
van Ginkel, G.J. (author), van Gisbergen, Bart (author), Redig, F.H.J. (author)
We study a model of active particles that perform a simple random walk and on top of that have a preferred direction determined by an internal state which is modelled by a stationary Markov process. First we calculate the limiting diffusion coefficient. Then we show that the ‘active part’ of the diffusion coefficient is in some sense maximal...
journal article 2021
document
van Ginkel, G.J. (author), Redig, F.H.J. (author)
We consider the symmetric exclusion process on suitable random grids that approximate a compact Riemannian manifold. We prove that a class of random walks on these random grids converge to Brownian motion on the manifold. We then consider the empirical density field of the symmetric exclusion process and prove that it converges to the...
journal article 2019
document
Van Ginkel, G.J. (author)
Dualiteit is een handige manier om Markovprocessen te bestuderen. Hierbij wordt een in zekere zin moeilijk proces op een bepaalde manier met een eenvoudiger proces verbonden. Deze techniek zal in dit verslag worden toegelicht en zal toegepast worden op het Immediate Exchange Model, een welvaartverdelingsmodel waarin handelaren telkens na een...
bachelor thesis 2015
Searched for: author%3A%22van+Ginkel%2C+G.J.%22
(1 - 4 of 4)