Searched for: author%3A%22van+Maris%2C+A.J.A.%22
(41 - 60 of 63)

Pages

document
Huisjes, E.H. (author), De Hulster, E. (author), Van Dam, J.C. (author), Pronk, J.T. (author), Van Maris, A.J.A. (author)
The efficient fermentation of mixed substrates is essential for the microbial conversion of second-generation feedstocks, including pectin-rich waste streams such as citrus peel and sugar beet pulp. Galacturonic acid is a major constituent of hydrolysates of these pectin-rich materials. The yeast Saccharomyces cerevisiae, the main producer of...
journal article 2012
document
De Kok, S. (author), Yilmaz, D. (author), Daran, J.M. (author), Pronk, J.T. (author), Van Maris, A.J.A. (author)
Plasma membrane H+-ATPase isoforms with increased H+/ATP ratios represent a desirable asset in yeast metabolic engineering. In vivo proton coupling of two previously reported Pma1p isoforms (Ser800Ala, Glu803Gln) with increased in vitro H+/ATP stoichiometries was analysed by measuring biomass yields of anaerobic maltose-limited chemostat...
journal article 2012
document
Van Leeuwen, B.N.M. (author), Van der Wulp, A.M. (author), Duijnstee, I. (author), Van Maris, A.J.A. (author), Straathof, A.J.J. (author)
Isobutene (2-methylpropene) is one of those chemicals for which bio-based production might replace the petrochemical production in the future. Currently, more than 10 million metric tons of isobutene are produced on a yearly basis. Even though bio-based production might also be achieved through chemocatalytic or thermochemical methods, this...
journal article 2012
document
Boender, L.G.M. (author), Van Maris, A.J.A. (author), De Hulster, E.A.F. (author), Almering, M.J.H. (author), Van der Klei, I.J. (author), Veenhuis, M. (author), De Winde, J.H. (author), Pronk, J.T. (author), Daran-Lapujade, P.A.S. (author)
Extremely low specific growth rates (below 0.01 h?1) represent a largely unexplored area of microbial physiology. In this study, anaerobic, glucose-limited retentostats were used to analyse physiological and genome-wide transcriptional responses of Saccharomyces cerevisiae to cultivation at near-zero specific growth rates. While quiescence is...
journal article 2011
document
Boender, L.G.M. (author), Almering, M.J.H. (author), Dijk, M. (author), Van Maris, A.J.A. (author), De Winde, J.H. (author), Pronk, J.T. (author), Daran-Lapujade, P. (author)
Cultivation methods used to investigate microbial calorie restriction often result in carbon and energy starvation. This study aims to dissect cellular responses to calorie restriction and starvation in Saccharomyces cerevisiae by using retentostat cultivation. In retentostats, cells are continuously supplied with a small, constant carbon and...
journal article 2011
document
Pronk, J.T. (author), Van Maris, A.J.A. (author), Guadalupe Medina, V.G. (author)
The present invention relates to a yeast cell, in particular a recombinant yeast cell, the cell lacking enzymatic activity needed for the NADH-dependent glycerol synthesis or the cell having a reduced enzymatic activity with respect to the NADH- dependent glycerol synthesis compared to its corresponding wild-type yeast cell, the cell comprising...
patent 2011
document
Zelle, R.M. (author), Harrison, J.C. (author), Pronk, J.T. (author), Van Maris, A.J.A. (author)
Malic enzyme catalyzes the reversible oxidative decarboxylation of malate to pyruvate and CO2. The Saccharomyces cerevisiae MAE1 gene encodes a mitochondrial malic enzyme whose proposed physiological roles are related to the oxidative, malate-decarboxylating reaction. Hitherto, the inability of pyruvate carboxylase-negative (Pyc–) S. cerevisiae...
journal article 2010
document
Zelle, R.M. (author), Trueheart, J. (author), Harrison, J.C. (author), Pronk, J.T. (author), Van Maris, A.J.A. (author)
Pyruvate carboxylase is the sole anaplerotic enzyme in glucose-grown cultures of wild-type Saccharomyces cerevisiae. Pyruvate carboxylase-negative (Pyc–) S. cerevisiae strains cannot grow on glucose unless media are supplemented with C4 compounds, such as aspartic acid. In several succinate-producing prokaryotes, phosphoenolpyruvate...
journal article 2010
document
Zelle, R.M. (author), De Hulster, E. (author), Kloezen, W. (author), Pronk, J.T. (author), Van Maris, A.J.A. (author)
A recent effort to improve malic acid production by Saccharomyces cerevisiae by means of metabolic engineering resulted in a strain that produced up to 59 g liter(-1) of malate at a yield of 0.42 mol (mol glucose)(-1) in calcium carbonate-buffered shake flask cultures. With shake flasks, process parameters that are important for scaling up this...
journal article 2010
document
Zelle, R.M. (author), De Hulster, E. (author), Kloezen, W. (author), Pronk, J.T. (author), Van Maris, A.J.A. (author)
A recent effort to improve malic acid production by Saccharomyces cerevisiae by means of metabolic engineering resulted in a strain that produced up to 59 g liter?1 of malate at a yield of 0.42 mol (mol glucose)?1 in calcium carbonate-buffered shake flask cultures. With shake flasks, process parameters that are important for scaling up this...
journal article 2009
document
Medina, V.G. (author), Almering, M.J.H. (author), Van Maris, A.J.A. (author), Pronk, J.T. (author)
In anaerobic cultures of wild-type Saccharomyces cerevisiae, glycerol production is essential to reoxidize NADH produced in biosynthetic processes. Consequently, glycerol is a major by-product during anaerobic production of ethanol by S. cerevisiae, the single largest fermentation process in industrial biotechnology. The present study...
journal article 2009
document
Boender, L.G.M. (author), De Hulster, E.A.F. (author), Van Maris, A.J.A. (author), Daran-Lapujade, P.A.S. (author), Pronk, J.T. (author)
Growth at near-zero specific growth rates is a largely unexplored area of yeast physiology. To investigate the physiology of Saccharomyces cerevisiae under these conditions, the effluent removal pipe of anaerobic, glucose-limited chemostat culture (dilution rate, 0.025 h–1) was fitted with a 0.22-µm-pore-size polypropylene filter unit. This...
journal article 2009
document
Abbott, D.A. (author), Zelle, R.M. (author), Pronk, J.T. (author), Van Maris, A.J.A. (author)
To meet the demands of future generations for chemicals and energy and to reduce the environmental footprint of the chemical industry, alternatives for petrochemistry are required. Microbial conversion of renewable feedstocks has a huge potential for cleaner, sustainable industrial production of fuels and chemicals. Microbial production of...
journal article 2009
document
Abbott, D.A. (author), Suir, E. (author), Duong, G.H. (author), De Hulster, E. (author), Pronk, J.T. (author), Van Maris, A.J.A. (author)
Industrial production of lactic acid with the current pyruvate decarboxylase-negative Saccharomyces cerevisiae strains requires aeration to allow for respiratory generation of ATP to facilitate growth and, even under nongrowing conditions, cellular maintenance. In the current study, we observed an inhibition of aerobic growth in the presence of...
journal article 2009
document
Abbott, DA (author), Zelle, RM (author), Pronk, J.T. (author), van Maris, A.J.A. (author)
journal article 2009
document
Wisselink, H.W. (author), Toirkens, M.J. (author), Wu, Q. (author), Pronk, J.T. (author), Van Maris, A.J.A. (author)
Lignocellulosic feedstocks are thought to have great economic and environmental significance for future biotechnological production processes. For cost-effective and efficient industrial processes, complete and fast conversion of all sugars derived from these feedstocks is required. Hence, simultaneous or fast sequential fermentation of sugars...
journal article 2008
document
Zelle, R.M. (author), De Hulster, E. (author), Van Winden, W.A. (author), De Waard, P. (author), Dijkema, C. (author), Winkler, A.A. (author), Geertman, J.M. (author), Van Dijken, J.P. (author), Pronk, J.T. (author), Van Maris, A.J.A. (author)
Malic acid is a potential biomass-derivable "building block" for chemical synthesis. Since wild-type Saccharomyces cerevisiae strains produce only low levels of malate, metabolic engineering is required to achieve efficient malate production with this yeast. A promising pathway for malate production from glucose proceeds via carboxylation of...
journal article 2008
document
Hazelwood, L.A. (author), Daran, J.M. (author), Van Maris, A.J.A. (author), Pronk, J.T. (author), Dickinson, J.R. (author)
journal article 2008
document
Wisselink, H.W. (author), Toirkens, M.J. (author), Del Rosario Franco Berriel, M. (author), Winkler, A.A. (author), Van Dijken, J.P. (author), Pronk, J.T. (author), Van Maris, A.J.A. (author)
For cost-effective and efficient ethanol production from lignocellulosic fractions of plant biomass, the conversion of not only major constituents, such as glucose and xylose, but also less predominant sugars, such as L-arabinose, is required. Wild-type strains of Saccharomyces cerevisiae, the organism used in industrial ethanol production,...
journal article 2007
document
Van Maris, A.J.A. (author), Winkler, A.A. (author), Kuyper, M. (author), De Laat, W.T. (author), Van Dijken, J.P. (author), Pronk, J.T. (author)
Metabolic engineering of Saccharomyces cerevisiae for ethanol production from d-xylose, an abundant sugar in plant biomass hydrolysates, has been pursued vigorously for the past 15 years. Whereas wild-type S. cerevisiae cannot ferment d-xylose, the ketoisomer d-xylulose can be metabolised slowly. Conversion of d-xylose into d-xylulose is...
journal article 2007
Searched for: author%3A%22van+Maris%2C+A.J.A.%22
(41 - 60 of 63)

Pages