Searched for: author:"van der Neut, J.R."
(1 - 20 of 25)

Pages

document
Wapenaar, C.P.A. (author), Brackenhoff, J.A. (author), Thorbecke, J.W. (author), van der Neut, J.R. (author), Slob, E.C. (author), Verschuur, D.J. (author)
A virtual acoustic source inside a medium can be created by emitting a time-reversed point-source response from the enclosing boundary into the medium. However, in many practical situations the medium can be accessed from one side only. In those cases the time-reversal approach is not exact. Here, we demonstrate the experimental design and...
journal article 2018
document
Zhang, L. (author), Slob, E.C. (author), Wapenaar, C.P.A. (author), van der Neut, J.R. (author)
A revised Marchenko scheme that avoids the need to compute the Green’s function is presented for artefact-free image of the subsurface with single-sided reflection response as input. The initial downgoing Green’s function which can be modelled from a macro model is needed for solving the revised Marchenko equations instead of its inverse. The...
conference paper 2018
document
Wapenaar, C.P.A. (author), Brackenhoff, J.A. (author), Thorbecke, J.W. (author), van der Neut, J.R. (author), Slob, E.C. (author)
Marchenko imaging is a novel imaging technique that is capable to retrieve images from single-sided reflection measurements free of artefacts related to internal multiples (e.g. Behura et al., 2014; Broggini et al., 2012). An essential ingredient of Marchenko imaging is the so-called focusing function which can<br/>be retrieved from reflection...
conference paper 2018
document
Zhang, L. (author), Slob, E.C. (author), van der Neut, J.R. (author), Wapenaar, C.P.A. (author)
We have derived an improved reverse time migration (RTM) scheme to image the medium without artifacts arising from internal multiple reflections. This is based on a revised implementation of Marchenko redatuming using a new time-truncation operator. Because of the new truncation operator, we can use the time-reversed version of the standard...
journal article 2018
document
Thorbecke, J.W. (author), Slob, E.C. (author), Brackenhoff, J.A. (author), van der Neut, J.R. (author), Wapenaar, C.P.A. (author)
The Marchenko method makes it possible to compute subsurface-to-surface Green's functions from reflection measurements at the surface. Applications of the Marchenko method have already been discussed in many papers, but its implementation aspects have not yet been discussed in detail. Solving the Marchenko equation is an inverse problem. The...
journal article 2017
document
van der Neut, J.R. (author), Johnson, Jami L. (author), van Wijk, K. (author), Singh, S. (author), Slob, E.C. (author), Wapenaar, C.P.A. (author)
From acoustics to medical imaging and seismology, one strives to make inferences about the structure of complex media from acoustic wave observations. This study proposes a solution that is derived from the multidimensional Marchenko equation, to learn about the acoustic source distribution inside a volume, given a set of observations outside...
journal article 2017
document
Wapenaar, C.P.A. (author), van der Neut, J.R. (author), Slob, E.C. (author)
journal article 2017
document
Singh, S. (author), Snieder, R (author), van der Neut, J.R. (author), Thorbecke, J.W. (author), Slob, E.C. (author), Wapenaar, C.P.A. (author)
Imagine placing a receiver at any location in the earth and recording the response at that location to sources on the surface. In such a world, we could place receivers around our reservoir to better image the reservoir and understand its properties. Realistically, this is not a feasible approach for understanding the subsurface. We have...
journal article 2017
document
Wapenaar, C.P.A. (author), van der Neut, J.R. (author), Slob, E.C. (author)
The question whether multiples are signal or noise is subject of ongoing debate. In this paper we consider correlation and deconvolution imaging methods and analyse to what extent multiples contribute to the image in these methods. Our starting point is the assumption that at a specific depth level the full downgoing and upgoing fields (both...
conference paper 2017
document
Wapenaar, C.P.A. (author), van der Neut, J.R. (author), Thorbecke, J.W. (author), Slob, E.C. (author), Snieder, R (author)
abstract 2016
document
Wapenaar, C.P.A. (author), van der Neut, J.R. (author), Thorbecke, J.W. (author), Slob, E.C. (author), Singh, Satyan (author)
The homogeneous Green’s function (i.e., the Green’s function and its time-reversed counterpart) plays an important role in optical, acoustic and seismic holography, in inverse scattering methods, in the field of time-reversal acoustics, in reversetime migration and in seismic interferometry. Starting with the classical closed-boundary...
conference paper 2016
document
Wapenaar, C.P.A. (author), van der Neut, J.R. (author), Slob, E.C. (author)
In wave theory, the homogeneous Green’s function consists of the impulse response to a point source, minus its time-reversal. It can be represented by a closed boundary integral. In many practical situations, the closed boundary integral needs to be approximated by an open boundary integral because the medium of interest is often accessible from...
journal article 2016
document
Zhang, L. (author), Slob, E.C. (author), van der Neut, J.R. (author), Staring, M. (author), Wapenaar, C.P.A. (author)
We present a one-dimensional lossless scheme to compute an image of a dissipative medium from two single-sided reflection responses. One reflection response is measured at or above the top reflector of a dissipative medium and the other reflection response is computed as if measured at or above the top reflector of a medium with negative...
conference paper 2016
document
Wapenaar, C.P.A. (author), Van der Neut, J.R. (author), Thorbecke, J.W. (author), Broggini, F. (author), Slob, E.C. (author), Snieder, R. (author)
journal article 2015
document
Singh, S. (author), Snieder, R. (author), Behura, J. (author), van der Neut, J.R. (author), Wapenaar, C.P.A. (author), Slob, E.C. (author)
Recent work on retrieving the Green’s function with the Marchenko equation shows how these functions for a virtual source in the subsurface can be obtained from reflection data. The response to the virtual source is the Green’s function from the location of the virtual source to the surface. The Green’s function is retrieved using only the...
journal article 2015
document
Van der Neut, J.R. (author), Wapenaar, C.P.A. (author), Thorbecke, J.W. (author), Slob, E.C. (author), Vasconcelos, I. (author)
In Marchenko imaging, wavefields are retrieved at specified focal points in the subsurface through an iterative scheme derived from the multidimensional Marchenko equation. The method requires seismic-reflection data at the earth’s surface (after free-surface multiple elimination) and an estimate of the direct wavefield from the surface to each...
journal article 2015
document
Van der Neut, J.R. (author), Thorbecke, J.W. (author), Wapenaar, C.P.A. (author), Slob, E.C. (author)
Focusing functions are defined as wavefields that focus at a specified location in a heterogeneous subsurface. These functions can be directly related to Green's functions and hence they can be used for seismic imaging of complete wavefields, including not only primary reflections but all orders of internal multiples. Recently, it has been shown...
conference paper 2015
document
Singh, S. (author), Snieder, R. (author), Behura, J. (author), van der Neut, J.R. (author), Wapenaar, C.P.A. (author), Slob, E.C. (author)
Recent work on autofocusing with the Marchenko equation has shown how the Green's function for a virtual source in the subsurface can be obtained from reflection data. The response to the virtual source is the Green's function from the location of the virtual source to the surface. The Green's function is retrieved using only the reflection...
conference paper 2014
document
Wapenaar, C.P.A. (author), Thorbecke, J.W. (author), Van der Neut, J.R. (author), Broggini, F. (author), Slob, E.C. (author), Snieder, R. (author)
lecture notes 2014
document
Wapenaar, C.P.A. (author), Thorbecke, J.W. (author), Van der Neut, J.R. (author), Vasconcelos, I. (author), Slob, E.C. (author)
Marchenko imaging is a new way to deal with internal multiple scattering in migration. It has been designed for layered media with smooth interfaces. Here we analyze the performance of the Marchenko scheme for a medium with many point scatterers. Although the conditions for Marchenko imaging are violated, we observe from a numerical experiment...
conference paper 2014
Searched for: author:"van der Neut, J.R."
(1 - 20 of 25)

Pages