Searched for: author:"van der Neut, J.R."
(1 - 20 of 23)

Pages

document
Wapenaar, C.P.A. (author), Brackenhoff, J.A. (author), Thorbecke, J.W. (author), van der Neut, J.R. (author), Slob, E.C. (author), Verschuur, D.J. (author)
A virtual acoustic source inside a medium can be created by emitting a time-reversed point-source response from the enclosing boundary into the medium. However, in many practical situations the medium can be accessed from one side only. In those cases the time-reversal approach is not exact. Here, we demonstrate the experimental design and...
journal article 2018
document
Wapenaar, C.P.A. (author), Brackenhoff, J.A. (author), Thorbecke, J.W. (author), van der Neut, J.R. (author), Slob, E.C. (author)
Marchenko imaging is a novel imaging technique that is capable to retrieve images from single-sided reflection measurements free of artefacts related to internal multiples (e.g. Behura et al., 2014; Broggini et al., 2012). An essential ingredient of Marchenko imaging is the so-called focusing function which can<br/>be retrieved from reflection...
conference paper 2018
document
Thorbecke, J.W. (author), Slob, E.C. (author), Brackenhoff, J.A. (author), van der Neut, J.R. (author), Wapenaar, C.P.A. (author)
The Marchenko method makes it possible to compute subsurface-to-surface Green's functions from reflection measurements at the surface. Applications of the Marchenko method have already been discussed in many papers, but its implementation aspects have not yet been discussed in detail. Solving the Marchenko equation is an inverse problem. The...
journal article 2017
document
Singh, S. (author), Snieder, R (author), van der Neut, J.R. (author), Thorbecke, J.W. (author), Slob, E.C. (author), Wapenaar, C.P.A. (author)
Imagine placing a receiver at any location in the earth and recording the response at that location to sources on the surface. In such a world, we could place receivers around our reservoir to better image the reservoir and understand its properties. Realistically, this is not a feasible approach for understanding the subsurface. We have...
journal article 2017
document
Wapenaar, C.P.A. (author), Thorbecke, J.W. (author), van der Neut, J.R. (author)
Green's theorem plays a fundamental role in a diverse range of wavefield imaging applications, such as holographic imaging, inverse scattering, time-reversal acoustics and interferometric Green's function retrieval. In many of those applications, the homogeneous Green's function (i.e. the Green's function of the wave equation without a...
journal article 2016
document
Wapenaar, C.P.A. (author), van der Neut, J.R. (author), Thorbecke, J.W. (author), Slob, E.C. (author), Singh, Satyan (author)
The homogeneous Green’s function (i.e., the Green’s function and its time-reversed counterpart) plays an important role in optical, acoustic and seismic holography, in inverse scattering methods, in the field of time-reversal acoustics, in reversetime migration and in seismic interferometry. Starting with the classical closed-boundary...
conference paper 2016
document
Wapenaar, C.P.A. (author), van der Neut, J.R. (author), Thorbecke, J.W. (author), Slob, E.C. (author), Snieder, R (author)
abstract 2016
document
Wapenaar, C.P.A. (author), Van der Neut, J.R. (author), Thorbecke, J.W. (author), Broggini, F. (author), Slob, E.C. (author), Snieder, R. (author)
journal article 2015
document
Van der Neut, J.R. (author), Wapenaar, C.P.A. (author), Thorbecke, J.W. (author), Slob, E.C. (author), Vasconcelos, I. (author)
In Marchenko imaging, wavefields are retrieved at specified focal points in the subsurface through an iterative scheme derived from the multidimensional Marchenko equation. The method requires seismic-reflection data at the earth’s surface (after free-surface multiple elimination) and an estimate of the direct wavefield from the surface to each...
journal article 2015
document
Van der Neut, J.R. (author), Thorbecke, J.W. (author), Wapenaar, C.P.A. (author), Slob, E.C. (author)
Focusing functions are defined as wavefields that focus at a specified location in a heterogeneous subsurface. These functions can be directly related to Green's functions and hence they can be used for seismic imaging of complete wavefields, including not only primary reflections but all orders of internal multiples. Recently, it has been shown...
conference paper 2015
document
Van der Neut, J.R. (author), Wapenaar, C.P.A. (author), Thorbecke, J.W. (author), Vasconcelos, I. (author)
Recently, a novel iterative scheme was proposed to retrieve Green's functions in an unknown medium from its single-sided reflection response and an estimate of the propagation velocity. In Marchenko imaging, these Green's functions are used for seismic imaging with complete wavefields, including internal multiple reflections. In this way, common...
conference paper 2014
document
Wapenaar, C.P.A. (author), Van der Neut, J.R. (author), Thorbecke, J.W. (author), Vasconcelos, I. (author), Van Manen, D.J. (author), Ravasi, M. (author)
Despite the close links between the fields of time-reversed acoustics, seismic interferometry and Marchenko imaging, a number of subtle differences exist. This paper reviews the various focusing conditions of these methods, the causality/acausality aspects of the corresponding focusing wavefields, and the requirements with respect to...
conference paper 2014
document
Wapenaar, C.P.A. (author), Thorbecke, J.W. (author), Van der Neut, J.R. (author), Broggini, F. (author), Slob, E.C. (author), Snieder, R. (author)
lecture notes 2014
document
Wapenaar, C.P.A. (author), Thorbecke, J.W. (author), Van der Neut, J.R. (author), Vasconcelos, I. (author), Slob, E.C. (author)
Marchenko imaging is a new way to deal with internal multiple scattering in migration. It has been designed for layered media with smooth interfaces. Here we analyze the performance of the Marchenko scheme for a medium with many point scatterers. Although the conditions for Marchenko imaging are violated, we observe from a numerical experiment...
conference paper 2014
document
Wapenaar, C.P.A. (author), Thorbecke, J.W. (author), Van der Neut, J.R. (author), Broggini, F. (author), Slob, E.C. (author), Snieder, R. (author)
Traditionally, the Marchenko equation forms a basis for 1D inverse scattering problems. A 3D extension of the Marchenko equation enables the retrieval of the Green’s response to a virtual source in the subsurface from reflection measurements at the earth’s surface. This constitutes an important step beyond seismic interferometry. Whereas seismic...
journal article 2014
document
Wapenaar, C.P.A. (author), Thorbecke, J.W. (author), Van der Neut, J.R. (author), Broggini, F. (author), Slob, E.C. (author), Snieder, R. (author)
The methodology of Green’s function retrieval by cross-correlation has led to many interesting applications for passive and controlled-source acoustic measurements. In all applications, a virtual source is created at the position of a receiver. Here a method is discussed for Green’s function retrieval from controlled-source reflection data,...
journal article 2014
document
Van der Neut, J.R. (author), Wapenaar, C.P.A. (author), Thorbecke, J.W. (author), Vasconcelos, I. (author)
Complex overburdens can severely distort transmitted wavefields, posing serious challenges for seismic imaging. In Marchenko redatuming, we use an iterative scheme to estimate so-called focusing functions, which can be used to redatum seismic wavefields to a specified level below the major complexities in the subsurface. Unlike in conventional...
conference paper 2014
document
Thorbecke, J.W. (author), Van der Neut, J.R. (author), Wapenaar, C.P.A. (author)
Recent research showed that the Marchenko equation can be used to construct the Green’s function for a virtual source position in the subsurface. The method requires the reflection response at the surface and an estimate of the direct arrival of the wavefield, traveling from the virtual source location to the acquisition surface. In this paper,...
conference paper 2013
document
Wapenaar, C.P.A. (author), Slob, E.C. (author), Broggini, F. (author), Snieder, R. (author), Thorbecke, J.W. (author), Van der Neut, J.R. (author)
Recently we introduced a new approach for retrieving the Green's response to a virtual source in the subsurface from reflection data at the surface. Unlike in seismic interferometry, no receiver is needed at the position of the virtual source. Here we present the theory behind this new method. First we introduce the Green's function G and a so...
conference paper 2013
document
Wapenaar, C.P.A. (author), Thorbecke, J.W. (author), Van der Neut, J.R. (author), Broggini, F. (author), Snieder, R. (author)
It has recently been shown that the response to a virtual source in the subsurface can be derived from reflection data at the surface and an estimate of the direct arrivals between the virtual source and the surface. Hence, unlike for seismic interferometry, no receivers are needed inside the medium. This new method recovers the complete...
conference paper 2012
Searched for: author:"van der Neut, J.R."
(1 - 20 of 23)

Pages