Searched for: author:"van der Neut, J.R."
(21 - 40 of 72)

Pages

document
Singh, S. (author), Snieder, R (author), van der Neut, J.R. (author), Thorbecke, J.W. (author), Slob, E.C. (author), Wapenaar, C.P.A. (author)
Imagine placing a receiver at any location in the earth and recording the response at that location to sources on the surface. In such a world, we could place receivers around our reservoir to better image the reservoir and understand its properties. Realistically, this is not a feasible approach for understanding the subsurface. We have...
journal article 2017
document
Barrera Pacheco, D.F. (author), Schleicher, J. (author), van der Neut, J.R. (author), Wapenaar, C.P.A. (author)
Seismic interferometry is a method to retrieve Green’s functions for sources (or receivers) where there are only receivers (or sources, respectively). This can be done by correlationor deconvolution-based methods. In this work we present a<br/>new approach to reposition the seismic array from the earth’s surface to an arbitrary datum at depth...
conference paper 2017
document
Wapenaar, C.P.A. (author), van der Neut, J.R. (author), Slob, E.C. (author)
journal article 2017
document
Brackenhoff, J.A. (author), van der Neut, J.R. (author), Wapenaar, C.P.A. (author)
The Marchenko equation can be used to retrieve the Green’s function at depth as a full function or decomposed into its upand downgoing parts. We show that the equation can be rewritten to create a decomposition scheme that can decompose a full wavefield, that was recorded at depth, into its up- and downgoing parts. We show that this can be done...
conference paper 2017
document
Staring, M. (author), Pereira, R (author), Douma, H (author), van der Neut, J.R. (author), Wapenaar, C.P.A. (author)
We present an adaptive double-focusing method for applying source-receiver Marchenko redatuming to field data. Receiver redatuming is achieved by a first focusing step, where the coupled Marchenko equations are iteratively solved for the oneway Green’s functions. Next, source redatuming is typically performed by a multi-dimensional deconvolution...
conference paper 2017
document
Staring, M. (author), van der Neut, J.R. (author), Wapenaar, C.P.A. (author)
We present an interferometric interpretation of the iterative Marchenko scheme including both free-surface multiples and internal multiples. Cross-correlations are used to illustrate the combination of causal and acausal events that are essential for the process of multiple removal. The first 4 steps in the scheme are discussed in detail, where...
conference paper 2016
document
Liu, Yi (author), van der Neut, J.R. (author), Arntsen, B (author), Wapenaar, C.P.A. (author)
A novel application of seismic interferometry (SI) and Marchenko imaging using both surface and borehole data is presented. A series of redatuming schemes is proposed to combine both data sets for robust deep local imaging in the presence of velocity uncertainties. The redatuming schemes create a virtual acquisition geometry where both sources...
journal article 2016
document
Liu, Yi (author), Arntsen, B (author), Landrö, M (author), van der Neut, J.R. (author), Wapenaar, C.P.A. (author)
Understanding seismic changes in the subsurface is important for reservoir management and health, safety and environmental (HSE) issues. Typically the changes are interpreted based on the time shifts in seismic time-lapse (4D) data, where sources are at the surface and receivers are either at the surface or in a borehole. With these types of...
conference paper 2016
document
van der Neut, J.R. (author), Wapenaar, C.P.A. (author)
Imagine placing a receiver at any location in the earth and recording the response at that location to sources on the surface. In such a world, we could place receivers around our reservoir to better image the reservoir and understand its properties. Realistically, this is not a feasible approach for understanding the subsurface. We have...
journal article 2016
document
Wapenaar, C.P.A. (author), van der Neut, J.R. (author), Slob, E.C. (author)
In wave theory, the homogeneous Green’s function consists of the impulse response to a point source, minus its time-reversal. It can be represented by a closed boundary integral. In many practical situations, the closed boundary integral needs to be approximated by an open boundary integral because the medium of interest is often accessible from...
journal article 2016
document
Singh, S. (author), Wapenaar, C.P.A. (author), van der Neut, J.R. (author), Snieder, R (author)
By solving the Marchenko equations, the Green’s function can be retrieved between a virtual receiver in the subsurface to points at the surface (no physical receiver is required at the virtual location). We extend the idea of these equations to retrieve the Green’s function between any two points in the subsurface; i.e, between a virtual source...
conference paper 2016
document
Wapenaar, C.P.A. (author), Thorbecke, J.W. (author), van der Neut, J.R. (author)
Green's theorem plays a fundamental role in a diverse range of wavefield imaging applications, such as holographic imaging, inverse scattering, time-reversal acoustics and interferometric Green's function retrieval. In many of those applications, the homogeneous Green's function (i.e. the Green's function of the wave equation without a...
journal article 2016
document
de Ridder, Sjoerd (author), van der Neut, J.R. (author), Curtis, A (author), Wapenaar, C.P.A. (author)
Recently, a novel method to redatum the wavefield in the sub-surface from a reflection response measured at the surface has gained interest for imaging primaries in the presence of strong internal multiples. A prerequisite for the algorithm is an accurate and correct estimate of the direct-wave Green's function. However, usually we use an...
conference paper 2016
document
Zhang, L. (author), Slob, E.C. (author), van der Neut, J.R. (author), Staring, M. (author), Wapenaar, C.P.A. (author)
We present a one-dimensional lossless scheme to compute an image of a dissipative medium from two single-sided reflection responses. One reflection response is measured at or above the top reflector of a dissipative medium and the other reflection response is computed as if measured at or above the top reflector of a medium with negative...
conference paper 2016
document
Wapenaar, C.P.A. (author), van der Neut, J.R. (author), Thorbecke, J.W. (author), Slob, E.C. (author), Singh, Satyan (author)
The homogeneous Green’s function (i.e., the Green’s function and its time-reversed counterpart) plays an important role in optical, acoustic and seismic holography, in inverse scattering methods, in the field of time-reversal acoustics, in reversetime migration and in seismic interferometry. Starting with the classical closed-boundary...
conference paper 2016
document
Wapenaar, C.P.A. (author), van der Neut, J.R. (author), Thorbecke, J.W. (author), Slob, E.C. (author), Snieder, R (author)
abstract 2016
document
Wapenaar, C.P.A. (author), Van der Neut, J.R. (author), Thorbecke, J.W. (author), Broggini, F. (author), Slob, E.C. (author), Snieder, R. (author)
journal article 2015
document
Singh, S. (author), Snieder, R. (author), Behura, J. (author), van der Neut, J.R. (author), Wapenaar, C.P.A. (author), Slob, E.C. (author)
Recent work on retrieving the Green’s function with the Marchenko equation shows how these functions for a virtual source in the subsurface can be obtained from reflection data. The response to the virtual source is the Green’s function from the location of the virtual source to the surface. The Green’s function is retrieved using only the...
journal article 2015
document
Wapenaar, C.P.A. (author), Van der Neut, J.R. (author), Draganov, D.S. (author)
Under conditional circumstances, the correlation of noise at two receivers is approximately proportional to the Green’s function between these receivers. Hence, the correlation process turns one of the receivers into a virtual source, of which the response is observed by the other receiver. This principle, also known as ambient-noise...
conference paper 2015
document
Van der Neut, J.R. (author), Wapenaar, C.P.A. (author), Thorbecke, J.W. (author), Slob, E.C. (author), Vasconcelos, I. (author)
In Marchenko imaging, wavefields are retrieved at specified focal points in the subsurface through an iterative scheme derived from the multidimensional Marchenko equation. The method requires seismic-reflection data at the earth’s surface (after free-surface multiple elimination) and an estimate of the direct wavefield from the surface to each...
journal article 2015
Searched for: author:"van der Neut, J.R."
(21 - 40 of 72)

Pages