"uuid","repository link","title","author","contributor","publication year","abstract","subject topic","language","publication type","publisher","isbn","issn","patent","patent status","bibliographic note","access restriction","embargo date","faculty","department","research group","programme","project","coordinates"
"uuid:0527c923-f2f4-422f-928c-c8fd3d9e6295","http://resolver.tudelft.nl/uuid:0527c923-f2f4-422f-928c-c8fd3d9e6295","Beyond Marchenko: Obtaining virtual receivers and virtual sources in the subsurface","Singh, S. (Colorado School of Mines); Wapenaar, C.P.A. (TU Delft Applied Geophysics and Petrophysics); van der Neut, J.R. (TU Delft Applied Geophysics and Petrophysics); Snieder, R (Colorado School of Mines)","Sicking, Charles (editor); Ferguson, John (editor)","2016","By solving the Marchenko equations, the Green’s function can be retrieved between a virtual receiver in the subsurface to points at the surface (no physical receiver is required at the virtual location). We extend the idea of these equations to retrieve the Green’s function between any two points in the subsurface; i.e, between a virtual source and a virtual receiver (no physical source or physical receiver is required at either of these locations). This Green’s function is called the virtual Green’s function and includes all the primaries, internal and free-surface multiples. Similar to the Marchenko Green’s function, we require the reflection response at the surface (single-sided illumination) and an estimate of the first arrival travel time from the virtual location to the surface.","multiples; scattering; downhole sources; downhole receivers; autofocusing","en","conference paper","SEG","","","","","","","","","","Applied Geophysics and Petrophysics","","",""
"uuid:ef15255e-c92c-4615-bd63-b9525f7e25db","http://resolver.tudelft.nl/uuid:ef15255e-c92c-4615-bd63-b9525f7e25db","Marchenko imaging: Imaging with primaries, internal multiples, and free-surface multiples","Singh, S.; Snieder, R.; Behura, J.; van der Neut, J.R.; Wapenaar, C.P.A.; Slob, E.C.","","2015","Recent work on retrieving the Green’s function with the Marchenko equation shows how these functions for a virtual source in the subsurface can be obtained from reflection data. The response to the virtual source is the Green’s function from the location of the virtual source to the surface. The Green’s function is retrieved using only the reflection response of the medium and an estimate of the first arrival at the surface from the virtual source. Current techniques, however, only include primaries and internal multiples. Therefore, all surface-related multiples must be removed from the reflection response prior to Green’s function retrieval. We have extended the Marchenko equation to retrieve the Green’s function that includes primaries, internal multiples, and free-surface multiples. In other words, we have retrieved the Green’s function in the presence of a free surface. The information needed for the retrieval is the same as the current techniques, with the only difference being that the reflection response now also includes free-surface multiples. The inclusion of these multiples makes it possible to include them in the imaging operator, and it obviates the need for surface-related multiple elimination. This type of imaging with Green’s functions is called Marchenko imaging.","multiples; scattering; imaging; reflectivity; reciprocity","en","journal article","Society of Exploration Geophysicists","","","","","","","","Civil Engineering and Geosciences","Geoscience & Engineering","","","",""
"uuid:a3762abc-0fae-4b0b-bea6-aa571f2db3e2","http://resolver.tudelft.nl/uuid:a3762abc-0fae-4b0b-bea6-aa571f2db3e2","Autofocusing imaging: Imaging with primaries, internal multiples and free-surface multiples","Singh, S.; Snieder, R.; Behura, J.; van der Neut, J.R.; Wapenaar, C.P.A.; Slob, E.C.","","2014","Recent work on autofocusing with the Marchenko equation has shown how the Green's function for a virtual source in the subsurface can be obtained from reflection data. The response to the virtual source is the Green's function from the location of the virtual source to the surface. The Green's function is retrieved using only the reflection response of the medium and an estimate of the first arrival at the surface from the virtual source. Current techniques, however, only include primaries and internal multiples. Therefore, all surface-related multiples must be removed from the reflection response prior to Green's function retrieval. Here, we extend the Marchenko equation to retrieve the Green's function that includes primaries, internal multiples, and free-surface multiples. In other words, we retrieve the Green's function in the presence of a free surface. We use the associated Green's function for imaging the subsurface. The information needed for the retrieval are the reflection response at the surface and an estimate of the first arrival at the surface from the virtual source. The reflection response, in this case, includes the free-surface multiples; this makes it possible to include these multiples in the imaging operator and it obviates the need for surface-related multiple elimination.","imaging; multiples; scattering; autofocusing; internal multiples","en","conference paper","SEG","","","","","","","","Civil Engineering and Geosciences","Geoscience & Engineering","","","",""
"uuid:f1750374-9a25-4f81-a5d5-e99279aec31e","http://resolver.tudelft.nl/uuid:f1750374-9a25-4f81-a5d5-e99279aec31e","Data-driven Green's function retrieval and application to imaging with multidimensional deconvolution","Broggini, F.; Wapenaar, C.P.A.; Van der Neut, J.R.; Snieder, R.","","2014","An iterative method is presented that allows one to retrieve the Green's function originating from a virtual source located inside a medium using reflection data measured only at the acquisition surface. In addition to the reflection response, an estimate of the travel times corresponding to the direct arrivals is required. However, no detailed information about the heterogeneities in the medium is needed. The iterative scheme generalizes the Marchenko equation for inverse scattering to the seismic reflection problem. To give insight in the mechanism of the iterative method, its steps for a simple layered medium are analyzed using physical arguments based on the stationary phase method. The retrieved Green's wavefield is shown to correctly contain the multiples due to the inhomogeneities present in the medium. Additionally, a variant of the iterative scheme enables decomposition of the retrieved wavefield into its downgoing and upgoing components. These wavefields then enable creation of a ghost-free image of the medium with either cross correlation or multidimensional deconvolution, presenting an advantage over standard prestack migration.","autofocusing; Marchenko; scattering; interferometry; Green's function","en","journal article","American Geophysical Union","","","","","","","2014-07-17","Civil Engineering and Geosciences","Geoscience & Engineering","","","",""