Searched for: collection%253Air
(1 - 19 of 19)
document
Thorbecke, J.W. (author), Almobarak, Mohammed (author), van IJsseldijk, J.E. (author), Brackenhoff, Joeri (author), Meles, Giovanni (author), Wapenaar, C.P.A. (author)
The Marchenko algorithm can suppress the disturbing effects of internal multiples that are present in seismic reflection data. To achieve this, a set of coupled equations with four unknowns is solved. These coupled equations are separated into a set of two equations with two unknowns using a time window. The two unknown focusing functions can...
journal article 2024
document
van der Neut, J.R. (author), Brackenhoff, J.A. (author), Meles, G.A. (author), Zhang, L. (author), Slob, E.C. (author), Wapenaar, C.P.A. (author)
A Green's function in an acoustic medium can be retrieved from reflection data by solving a multidimensional Marchenko equation. This procedure requires a priori knowledge of the initial focusing function, which can be interpreted as the inverse of a transmitted wavefield as it would propagate through the medium, excluding (multiply)...
journal article 2022
document
Meles, G.A. (author), Reinicke, Christian (author), Dukalski, M (author), Wapenaar, C.P.A. (author)
Marchenko redatuming retrieves Green’s functions inside an unknown medium, by solving a set of coupled Marchenko equations, which are derived from an under-determined system of equation and two temporal truncations. To constrain the problem, two assumptions are made, which hold reasonably well for acoustic, but not for elastodynamic waves. First...
conference paper 2022
document
van der Neut, J.R. (author), Brackenhoff, J. (author), Meles, Giovanni Angelo (author), Slob, E.C. (author), Wapenaar, C.P.A. (author)
Green’s functions in an unknown elastic layered medium can be retrieved from single-sided reflection data by solving a Marchenko equation. This methodology requires a priori knowledge of all forward-scattered (non-converted and converted) waveforms. Moreover, the medium should satisfy stringent monotonicity conditions, which are often not met in...
conference paper 2022
document
Brackenhoff, J.A. (author), Thorbecke, J.W. (author), Meles, G.A. (author), Koehne, Victor (author), Barrera, Diego (author), Wapenaar, C.P.A. (author)
We implement the 3D Marchenko equations to retrieve responses to virtual sources inside the subsurface. For this, we require reflection data at the surface of the Earth that contain no free-surface multiples and are densely sampled in space. The required 3D reflection data volume is very large and solving the Marchenko equations requires a...
journal article 2022
document
van der Neut, J.R. (author), Brackenhoff, Joeri (author), Meles, Giovanni Angelo (author), Slob, E.C. (author), Wapenaar, C.P.A. (author)
By solving a Marchenko equation, Green’s functions at an arbitrary (inner) depth level inside an unknown elastic layered medium can be retrieved from single-sided reflection data, which are collected at the top of the medium. To date, it has only been possible to obtain an exact solution if the medium obeyed stringent monotonicity conditions and...
journal article 2022
document
van der Neut, J.R. (author), Brackenhoff, J. (author), Meles, G. (author), Zhang, L. (author), Slob, E.C. (author), Wapenaar, C.P.A. (author)
Green’s functions in an unknown medium can be retrieved from single-sided reflection data by solving a multidimensional Marchenko equation. This methodology requires knowledge of the direct wavefield throughout the medium, which should include forward-scattered waveforms. In practice, the direct field is often computed in a smooth background...
conference paper 2021
document
Wapenaar, C.P.A. (author), Brackenhoff, J.A. (author), Dukalski, Marcin (author), Meles, G.A. (author), Slob, E.C. (author), Staring, M. (author), Thorbecke, J.W. (author), van der Neut, J.R. (author), Zhang, L. (author), Reinicke Urruticoechea, C. (author)
With the Marchenko method it is possible to retrieve Green's functions between virtual sources in the subsurface and receivers at the surface from reflection data at the surface and focusing functions. A macro model of the subsurface is needed to estimate the first arrival; the internal multiples are retrieved entirely from the reflection data....
journal article 2021
document
Shoja, Aydin (author), Meles, G.A. (author), Wapenaar, C.P.A. (author)
The Hessian matrix plays an important role in correct interpretation of the multiple scattered wave fields inside the FWI frame work. Due to the high computational costs, the computation of the Hessian matrix is not feasible. Consequently, FWI produces overburden related artifacts inside the target zone model, due to the lack of the exact...
conference paper 2020
document
Meles, G.A. (author), Zhang, L. (author), Thorbecke, J.W. (author), Wapenaar, C.P.A. (author), Slob, E.C. (author)
Seismic images provided by reverse time migration can be contaminated by artefacts associated with the migration of multiples. Multiples can corrupt seismic images, producing both false positives, that is by focusing energy at unphysical interfaces, and false negatives, that is by destructively interfering with primaries. Multiple prediction...
journal article 2020
document
Meles, G.A. (author), Zhang, L. (author), Thorbecke, J.W. (author), Wapenaar, C.P.A. (author), Slob, E.C. (author)
<br/>
abstract 2020
document
Meles, G.A. (author), Zhang, L. (author), Thorbecke, J.W. (author), Wapenaar, C.P.A. (author), Slob, E.C. (author)
Seismic images provided by reverse time migration can be contaminated by artefacts associated with the migration of multiples.<br/><br/>Multiples can corrupt seismic images, producing both false positives, i.e. by focusing energy at unphysical interfaces, and false negatives, i.e. by destructively interfering with primaries. Multiple-related...
conference paper 2020
document
Meles, G.A. (author), van der Neut, J.R. (author), van Dongen, K.W.A. (author), Wapenaar, C.P.A. (author)
Wavefield focusing can be achieved by Time-Reversal Mirrors, which involve in- and output signals that are infinite in time and waves propagating through the entire medium. Here, an alternative solution for wavefield focusing is presented. This solution is based on a new integral representation where in- and output signals are finite in time,...
conference paper 2019
document
Meles, G.A. (author), van der Neut, J.R. (author), van Dongen, K.W.A. (author), Wapenaar, C.P.A. (author)
Wavefield focusing is often achieved by time-reversal mirrors, where wavefields emitted by a source located at the focal point are evaluated at a closed boundary and sent back, after time-reversal, into the medium from that boundary. Mathematically, time-reversal mirrors are derived from closed-boundary integral representations of reciprocity...
journal article 2019
document
Meles, G.A. (author), Wapenaar, C.P.A. (author), Thorbecke, J.W. (author)
Marchenko redatuming is a novel scheme used to retrieve up- and downgoing Green's functions in an unknown medium.Marchenko equations are based on reciprocity theorems and are derived on the assumption of the existence of functions exhibiting space-time focusing properties once injected in the subsurface. In contrast to interferometry but...
journal article 2018
document
Reinicke Urruticoechea, C. (author), Meles, G.A. (author), Wapenaar, C.P.A. (author)
The Marchenko method is capable to create virtual sources inside a medium that is only accessible from an openboundary. The resulting virtual data can be used to retrieve images free of artefacts caused by internal multiples. Conventionally, the Marchenko method retrieves a so-called focusing wavefield that focuses the data from the recording...
conference paper 2018
document
Dokter, E. (author), Meles, G.A. (author), Curtis, A (author), Wapenaar, C.P.A. (author)
A number of seismic processing methods, including velocity analysis (Sheriff and Geldart, 1999), make the assumption that recorded waves are primaries - that they have scattered only once (the Born approximation). Multiples then represent a source of coherent noise and must be suppressed to avoid artefacts. There are different approaches to...
conference paper 2017
document
Meles, Giovanni (author), Wapenaar, C.P.A. (author), Curtis, A (author)
State-of-the-art methods to image the earth’s subsurface using active-source seismic reflection data involve reverse time migration. This and other standard seismic processing methods such as velocity analysis provide best results only when all waves in the data set are primaries (waves reflected only once). A variety of methods are therefore...
journal article 2016
document
Meles, G.A. (author), Wapenaar, C.P.A. (author), Curt, A (author)
abstract 2016
Searched for: collection%253Air
(1 - 19 of 19)