- document
-
Foffano, Daniele (author)Model-Based Reinforcement Learning (MBRL) algorithms solve sequential decision-making problems, usually formalised as Markov Decision Processes, using a model of the environment dynamics to compute the optimal policy. When dealing with complex environments, the environment dynamics are frequently approximated with function approximators (such as...master thesis 2022
- document
-
Kuhn, Emanuel (author)Previous research has in reinforcement learning for traffic control has used various state abstractions. Some use feature vectors while others use matrices of car positions. This paper first compares a simple feature vector consisting of only queue sizes per incoming lane to a matrix of car positions. Then it investigates if knowledge can be...bachelor thesis 2020