- document
-
Rethans, Isa (author)Language similarity is very useful for enrichment data in both Natural Lanuguage Processing (NLP) and Automatic Speech Recognition (ASR). A clustering algorithm could provide an efficient means to define language similarity in a data-driven way. This research investigates the relation between linguistic classification by origin and data driven...bachelor thesis 2021
- document
-
IJpma, Johannes (author)This paper compares the performance of two phonetic notations, IPA and ASJPcode, with the alphabetical notation for word-level language identification. Two machine learning models, a Multilayer Percerptron and a Logistic Regression model, are used to classify words using each of the three notations. With both models the IPA notation outperforms...bachelor thesis 2021
- document
-
Karnani, Simran (author)Rhyming words are one of the most important features in poems. They add rhythm to a poem, and poets use this literary device to portray emotion and meaning to their readers. Thus, detecting rhyming words will aid in adding emotions and enhancing readability when generating poems. Previous studies have been done on the topic of poem generation....bachelor thesis 2021
- document
-
Happel, David (author)Using transcripts of the TV-series FRIENDS, this paper explores the problem of predicting the location in which a sentence was said. The research focuses on using feature extraction on the sentences, and training a logistic regression model on those features. Specifically looking at the differences in performance between using ELMo and TF-IDF...bachelor thesis 2020
- document
-
Chen, Dina (author)Text classification has a wide range of usage such as extracting the sentiment out of a product review, analyzing the topic of a document and spam detection. In this research, the text classification task is to predict from which TV-show a given line is. The skip-gram model, originally used to train the Word2Vec sentence embeddings [Mikolov et...bachelor thesis 2020
- document
-
Raijmakers, Thijs (author)Word embeddings are useful for various applications, such as sentiment classification (Tang et al., 2014), word translation (Xing, Wang, Liu, & Lin, 2015) and résumé parsing (Nasser, Sreejith, & Irshad, 2018). Previous research has determined that word embeddings contain gender bias, which can be problematic in certain applications such...bachelor thesis 2020