- document
-
Kanniainen, Konsta (author)Various techniques have been studied to handle unexpected changes in data streams, a phenomenon called concept drift. When the incoming data is not labeled and the labels are also not obtainable with a reasonable effort, detecting these drifts becomes less trivial. This study evaluates how well two data distribution based label-independent drift...bachelor thesis 2023
- document
-
Zamfirescu, Toma (author)Label-independent concept drift detectors represent an emerging topic in machine learning research, especially in models deployed in a production environment where obtaining labels can become increasingly difficult and costly. Concept drift refers to unforeseeable changes in the distribution of data streams, which directly impact the performance...bachelor thesis 2023
- document
-
André, Baptiste (author)When deployed in production, machine learning models sometimes lose accuracy over time due to a change in the distribution of the incoming data, which results in the model not reflecting reality any longer. A concept drift is this loss of accuracy over time. Drift detectors are algorithms used to detect such drifts. Drift detectors are important...bachelor thesis 2023
- document
-
Pohl, Jindřich (author)Concept drift is an unforeseeable change in the underlying data distribution of streaming data, and because of such a change, deployed classifiers over that data show a drop in accuracy. Concept drift detectors are algorithms capable of detecting such a drift, and unsupervised ones detect drift without needing the data’s actual labels, which can...bachelor thesis 2023