Searched for: contributor%3A%22Sicking%2C+Charles+%28editor%29%22
(1 - 4 of 4)
document
Slob, E.C. (author), Thorbecke, J.W. (author), Wapenaar, C.P.A. (author)
We present a scheme for Marchenko imaging in a dissipative heterogeneous medium. The scheme requires measured reflection and transmission data at two sides of the dissipative medium. The effectual medium is the same as the dissipative medium, but with negative dissipation. We show how the measured double-sided data can be combined to obtain the...
conference paper 2016
document
Singh, S. (author), Wapenaar, C.P.A. (author), van der Neut, J.R. (author), Snieder, R (author)
By solving the Marchenko equations, the Green’s function can be retrieved between a virtual receiver in the subsurface to points at the surface (no physical receiver is required at the virtual location). We extend the idea of these equations to retrieve the Green’s function between any two points in the subsurface; i.e, between a virtual source...
conference paper 2016
document
de Ridder, Sjoerd (author), van der Neut, J.R. (author), Curtis, A (author), Wapenaar, C.P.A. (author)
Recently, a novel method to redatum the wavefield in the sub-surface from a reflection response measured at the surface has gained interest for imaging primaries in the presence of strong internal multiples. A prerequisite for the algorithm is an accurate and correct estimate of the direct-wave Green's function. However, usually we use an...
conference paper 2016
document
Staring, M. (author), van der Neut, J.R. (author), Wapenaar, C.P.A. (author)
We present an interferometric interpretation of the iterative Marchenko scheme including both free-surface multiples and internal multiples. Cross-correlations are used to illustrate the combination of causal and acausal events that are essential for the process of multiple removal. The first 4 steps in the scheme are discussed in detail, where...
conference paper 2016
Searched for: contributor%3A%22Sicking%2C+Charles+%28editor%29%22
(1 - 4 of 4)