Searched for: department%3A%22Electrical%255C%252BSustainable%255C%252BEnergy%22
(1 - 3 of 3)
document
Schulte, M. (author), Bittkau, K. (author), Jäger, K. (author), Ermes, M. (author), Zeman, M. (author), Pieters, B.E. (author)
Textured interfaces in thin-film silicon solar cells improve the efficiency by light scattering. A technique to get experimental access to the angular intensity distribution (AID) at textured interfaces of the transparent conductive oxide (TCO) and silicon is introduced. Measurements are performed on a sample with polished microcrystalline...
journal article 2011
document
Jäger, K. (author), Schulte, K. (author), Bittkau, K. (author), Ermes, A.M. (author), Zeman, M. (author), Pieters, B.E. (author)
The scattering properties of transparent conductive oxide (TCO) layers are fundamentally related to the performance of thin film silicon solar cells. In this study we introduce an experimental technique to access light scattering properties at textured TCO-silicon interfaces. Therefore we prepared a sample with a polished microcrystalline...
conference paper 2011
document
Pieters, B.E. (author), Stiebig, H. (author), Zeman, M. (author), Van Swaaij, R.A.C.M.M. (author)
Microcrystalline silicon (?c-Si:H) is a promising material for application in multijunction thin-film solar cells. A detailed analysis of the optoelectronic properties is impeded by its complex microstructural properties. In this work we will focus on determining the mobility gap of ?c-Si:H material. Commonly a value of 1.1?eV is found, similar...
journal article 2009