Searched for: department%3A%22Quantum%255C%252BInternet%255C%252BDivision%22
(1 - 3 of 3)
document
Pompili, M. (author), Hermans, S.L.N. (author), Baier, S. (author), Beukers, H.K.C. (author), Humphreys, P.C. (author), Schouten, R.N. (author), Vermeulen, R.F.L. (author), Tiggelman, M.J. (author), Dos Santos Martins, L. (author), Dirkse, B. (author), Wehner, S.D.C. (author), Hanson, R. (author)
The distribution of entangled states across the nodes of a future quantum internet will unlock fundamentally new technologies. Here, we report on the realization of a three-node entanglement-based quantum network. We combine remote quantum nodes based on diamond communication qubits into a scalable phase-stabilized architecture, supplemented...
journal article 2021
document
Dirkse, B. (author), Pompili, M. (author), Hanson, R. (author), Walter, Michael (author), Wehner, S.D.C. (author)
The purpose of an entanglement witness experiment is to certify the creation of an entangled state from a finite number of trials. The statistical confidence of such an experiment is typically expressed as the number of observed standard deviations of witness violations. This method implicitly assumes that the noise is well-behaved so that...
journal article 2020
document
Dirkse, B. (author), Helsen, J. (author), Wehner, S.D.C. (author)
Unitarity randomized benchmarking (URB) is an experimental procedure for estimating the coherence of implemented quantum gates independently of state preparation and measurement errors. These estimates of the coherence are measured by the unitarity. A central problem in this experiment is relating the number of data points to rigorous...
journal article 2019